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Dielectric-constant evaluation from microstructures
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We present an accurate, efficient algorithm for calculating the effective dielectric constant«̄ of periodic
two-component composites with arbitrary unit-cell microstructures. The algorithm is based on a formulation of
the relevant equations in the Bergman-Milton representation of«̄ that enables the use of the fast Fourier
transform in their solution, coupled with the sum rules of the geometric spectral function. Our approach
accurately reproduces known results, such as the two-dimensional checkerboard problem, and yields excellent
agreement with experimentally measured results on random configurations of metallic spheres.
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INTRODUCTION

Calculating the effective dielectric properties of heterog
neous materials is a classical problem in physics and m
ematics that dates back to the early works by Rayleigh1 and
Clausius-Mossotti.2 Its importance stems from one of the b
sic aims of materials research: relating~predicting! the mac-
roscopic optical and transport properties of inhomogene
systems to~from! those of atomic or mesoscopic constit
ents. In the past two decades, there has been a strong re
of interest in composite problems focused mostly on
critical transport and geometric behaviors close to the pe
lation threshold. For the study of such characteristics it
been shown that the use of discretized models is sufficien
yield the universal critical exponents and critical geome
properties.3 Away from the threshold, however, the nonun
versal character of the dielectric problem means the ac
microstructures have to be taken into account, and thus
full difficulty of the classical problem returns. Various effe
tive medium theories have been formulated to calculate
effective dielectric constant«̄ of composites with different
types of microstructures, e.g., the Maxwell-Garnett the
~for the dispersion microstructure!,4 the Bruggeman’s self-
consistent theory~for the symmetric microstructure!,5 the
theory for the granular microstructures,6 or the differential
effective theory, originally due to Bruggeman~for the hier-
archical microstructure!.5,7 However, all effective medium
theories fail in terms of accurately relating an arbitrary m
crostructure to its complex effective dielectric constant.
view of the recent developments in microtomograph8

which can routinely generate three-dimensional~3D! micro-
structural data with microns resolution, the lack of a viab
theoretical approach to this problem represents a serious
in our ability to translate microstructural data into meanin
ful dielectric information.

In this work, we present an accurate and efficient al
rithm for calculating the complex effective dielectric co
stant of periodic two-component composites with arbitra
unit-cell microstructures. Our approach is based on a re
mulation of the relevant equations in the Bergman-Milt
representation of«̄,9 that enables the use of the fast Four
transform ~FFT! in their solution process. A direct conse
quence is that 106– 107. Fourier components can be eas
handled~on a workstation! in the calculation of the geomet
PRB 610163-1829/2000/61~2!/962~5!/$15.00
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ric spectral functionm~x!. When this FFT approach is
coupled with the exact sum rules form~x!, accurate evalua-
tion of «̄ becomes possible as illustrated below, even wh
the dielectric contrast between the two components,u«1 /«2u,
approaches̀ and touching microgeometries are present.
particular, we show that our approach accurately reprodu
the m~x! for the 2D checkerboard problem, as well as yiel
good agreement with experimentally measured results
random configurations. These results imply that even for
random composite case, as long as the geometric correla
length is finite and not too large, our approach can yi
reasonably accurate results by using unit cells larger tha
typical correlated volume.

FORMULATION

The basic task of effective dielectric constant calculat
is the solution of the equation

¹•«~rW !¹f50 ~1!

under the imposed condition of an external potentialf05z
~unit electric field in the z direction!. By expressing
«(rW)/«2512@h(rW)/s#, where s5«2 /(«22«1) is the only
material parameter in the problem andh(rW) is the character-
istic function, defined ash(rW)51 inside component 1 and
zero otherwise, Eq.~1! becomes

¹2f5
1

s
¹•h~rW !¹f. ~2!

A formal solution of Eq.~2! is possible by using the Green’
function of the Laplacian,G(rW,rW8)51/4purW2rW8u:

uf&5s~s2G!21uz&, ~3!

where the operatorG is given by

G5E drW8h~rW8!¹8G~rW2rW8!•¹8. ~4!

It should be noted thatG is a purely geometric operator as
depends only on the microstructure of the system. Under
definition of the inner product

^fuc&5E h~rW8!¹8f~rW8!•¹8c~rW8!drW8, ~5!
962 ©2000 The American Physical Society
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PRB 61 963DIELECTRIC-CONSTANT EVALUATION FROM . . .
the operatorG is Hermitian, with eigenvalues confined in th
interval @0,1#. From Eqs.~2!–~5!, it is straightforward to ob-
tain the Bergman-Milton representation of«̄ :9

«̄

«2
512E m~x!

s2x
dx512F~s!, ~6!

wherem(x)5u^zux&u2 is the geometric spectral function, an
ux& denotes the eigenfunction of theG operator with eigen-
valuex. From Eq.~6! it is clear that if the spectral function
is known accurately, the value of«̄ may be simply obtained
even in the limit of high-contrast ratio, i.e.,u«1 /«2u→`. Our
goal is thus the evaluation ofm~x! from microstructure data

THE SOLUTION APPROACH

For systems with arbitrary periodic microstructures, it
advantageous to seek the solution of Eq.~3! in the Fourier-
transformedkW space. To this end, we first expressc(rW)
5f(rW)2z as the periodic component of the potential th
deviates from the uniform field case. By writingakW5 ikckW ,
Eq. ~3! may be expressed as10

sakW2 (
qW Þ0

GkWqWaqW5 k̂•êzh~kW !, ~7!

whereGkWqW5 k̂•q̂h(kW2qW ) is the expression for theG operator
in the wave vector space, and the overhat denotes a
vector. We wish to seek the eigenvalues and eigenfunct
of G by using the Lanczos recursion method.11 That is, let
u0&5(1/a)uz&, with a being the normalization constant, an
define

Gu i &5bi 11u i 11&1ai u i &1bi 21u i 21&, ~8!

(b050), where theai ’s and thebi ’s are determined by the
conditions of orthogonality and normalization. Under this
cursive transformation,G is tridiagonal and thus its eigenvec
tors and eigenvalues can be easily calculated. By deno
ux̄& as the eigenfunction with the uniform electric field com
ponent subtracted off, one can expressux̄&5S iCi

xu i &. Since
the spectral function involves onlyC0

x , it is easy to show
from Eqs.~6! and ~7! that

F~s!5
1

s Fp1a2(
x

uC0
xu2

s2x G , ~9!

wherep denotes the volume fraction of component 1. Fro
Eq. ~9! it is simple to find the spectral function asxm(x)
5a2uC0

xu2.
In the recursion approach, the most time-consuming

eration is the matrix multiplication. SinceG is a full-matrix,
one 3D matrix multiplication requiresN6 operations, where
N is the number of Fourier components along one directi
However, by defining two states,u i a& and u i b&, as

^qW u i a&50 if qW 50,

5
1

q
^qW u i & otherwise,

and
t

nit
ns

-

ng

-

.

^qW u i b&5q^qW u i &,

the matrix multiplication may be expressed as a convolut
operation:

(
qW Þ0

GkWqW^qW u i &5(
qW

H k

2
h~kW2qW !^qW u i a&1

1

2k
h~kW2qW !^qW u i b&

2
1

2k
~kW2qW !2h~kW2qW !^qW u i a&J . ~10!

That means the matrix multiplication can now be perform
with the help of FFT, thus reducing the total operations co
in one 3D matrix multiplication to 4.3N413N3 at the most.
For N5100, that translates to a gain of 103 in terms of effi-
ciency, thereby transforming a nearly impossible problem
one that is calculable.

The increased number of microstructure Fourier com
nents, made possible by the recursive FFT method, ena
the accurate evaluation ofm~x! away from the pointx50.
However, nearx50, which dominates the behavior of«̄ in
the limit of u«1 /«2u→`, this increase of calculational capa
bility in itself is still insufficient to accurately determine th
correct quantitative behavior ofm~x!. Instead, we note tha
m~x! must satisfy the sum rules, which relate the values
m~x! near x50 to the integrated value away fromx50.
Thus the accurate determination of the spectral funct
away from x50 may be used to advantage in evaluati
m~x! nearx50.

APPLICATION

In this section we illustrate our solution approach throu
different classes of examples.

~1! Simple cubic array of closely spaced spheres. Let the
sphere dielectric constant be«1 and that of the matrix be«2 .
The sphere radius is denoted byR and the lattice constant b
a, where a/2R51.01, i.e., the spheres are closely spac
The Fourier transform of the characteristic function is giv
by

h~kW !5
4p

~ka!3 @sin~kR!2kRcos~kR!#. ~11!

We have carried out the recursive-FFT calculation of
spectral functionm~x! with N5135, i.e., about 2.53106

Fourier components. In this case, since the spheres are s
rated, the spectral function is known to have a gap extend
from x50 to some finite value. In order to clearly identif
this gap, we first broaden each eigenvalue with a suita
chosen width, e.g., 0.01. The peaks of the resulting cont
ous spectrum are then identified by checking the second
rivative of the spectrum. The whole spectrum is fit b
m(x)5( iAig(x,x i ,ai), whereg(x,x i ,ai)5exp@2(x2xi)

2/
ai

2#/aiAp is a Gaussian. The lowest eigenvalue and
weight,x1 andA1 , are then slightly adjusted so that the tw
sum rules, the zeroth momentS iAi5p and the first moment
S ix iAi5p(12p)/3, are satisfied. The effective dielectr
constant is given by Eq.~6! with

F~s!5(
i

Ai

s2x i
. ~12!
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964 PRB 61MA, ZHANG, TAM, AND SHENG
The calculated«̄ is plotted in Fig. 1 as a function of«1 /«2 ,
taken to be real in this case. Here the dashed line is ca
lated by a real-space formalism with spherical harmonic
sis functions with accuracy to five decimal places. Comp
son shows our present approach to be within 0.3% of
accurate value. It is interesting to note that due to the cl
approach of the spheres, the asymptotic value of«̄ in this
case, 6.569«2 , is about 60% larger than the Clausiu
Mossotti value of 4.1«2 , where only the dipole contribution
is accounted for.

~2! Orthorhombic array of closely spaced ellipsoid.
Whereas the case of spherical inclusions may be accura
calculated by using an alternative method, the advantag
the present approach lies in its ability to handle arbitr
unit-cell microstructures. Accordingly, we next consider
lipsoids where the three semi-axes,a.b.g, are in the ratio
of 1:0.8:0.7. The orthorhombic lattice constantsa1 ,a2 ,a3 in
the three directions are 2.02, 1.62, and 1.42, respectivel
units of a. The Fourier transform of the characteristic fun
tion is given by

h~kW !5
4pabg

k3a1a2a3
~sink2k cosk!, ~13!

where k5A(a2k1
21b2k2

21g2k3
2)1/2. The calculated «̄11

. «̄22. «̄33 are shown in Fig. 1. Since the first moments
the spectral function are different along the three orthogo
directions, in contrast to the case of the spheres, they hav
be evaluated from the characteristic function as

(
kWÞ0

h~2kW !h~kW !k1,2,3
2 /k2.

The results in the present case are 0.07564, 0.08412,
0.09022, respectively, along thex(1), y(2), andz(3) direc-
tions.

~3! Interpenetrating frames consisting of orthogonally i
tersecting rods with square cross sections. As both compo-
nents percolate, the spectral function has a delta func

FIG. 1. Calculated effective dielectric constants for a sim
cubic array of closely-spaced spheres («̄SP) and an orthorhombic
array of closely-spaced spheroids («̄11. «̄22. «̄33 in the three or-
thogonal directions!, plotted as a function of«1 /«2 , assumed to be
real in the present case. Parameters are given in the text. The d
line is the accurate result calculated from the spherical basis f
tions in real space. Maximum deviation of 0.3% is seen in
saturation value of«̄SP, achieved in the limit of«1 /«2→`.
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contribution atx50. The weight of this part,C, may be
determined by the sum rule, since the part away fromx50
may be accurately evaluated from the recursive-FFT
proach. For a simple cubic lattice with lattice constanta and
width of the rodd50.3a, the first moment, which is inde
pendent ofC, can be evaluated as a function of 1/N. By
extrapolating the results to 1/N50, a value of 0.05650 is
obtained ~for N5135, the first moment has the value
0.05566!. This compares very favorably with the exact res
of 0.056448 forp50.216. The corresponding value ofC
50.1034. We find that high accuracy is generally possi
for biconnected systems.

~4! The 2D checkerboard. The 2D checkerboard is a clas
sical problem. Its self-dual property means the spectral fu
tion must have the symmetryxm(x)5(12x)m(12x). In
fact, the spectral function is known analytically:xm(x)
5Ax(12x)/p,12 thus it presents an opportunity to chec
our approach. In contrast to examples~1!–~3!; the checker-
board is difficult in terms of obtaining accurate numeric
results because of their ‘‘just touching’’ geometry. In th
case,xm~x! should have a power-law behavior in the neig
borhood ofx50 andx51 as deduced from the percolatio
theory. Accordingly, we use the recursive-FFT approach
calculatexm~x!, but replaces the result in the interval 0<x
<A by axa(11bx) ~and similarly for the interval 12A
<x<1 through the symmetry relation!. The four param-
eters,a,a,b,A are to be optimally determined by the fou
requirements: the two sum rules plus the two continuity c
ditions for both the value and the first derivative ofxm~x!.
The results on the 2D checkerboard, with;106 Fourier com-
ponents, yield the exponent valuea50.560.05, in good
agreement with the analytical result. The resultingxm~x! is
compared with the exact expression~dashed line! in Fig. 2.

~5! The 3D checkerboard. Again the spectral function
should have the property thatxm(x)5(12x)m(12x). The
Fourier transform of the characteristic function is given b

h~kW !58
sin~k1a/2!sin~k2a/2!sin~k3a/2!

k1k2k3a3 , ~14!

wherea is the edge length of the cube, no analytical resul
known as yet. But based on the assumption of ed
conduction dominance, it has been argued that asymp
cally, the «̄ for the 3D checkerboard should have the sa

hed
c-
e

FIG. 2. The spectral function of the 2D checkerboard. T
dashed line represents the analytical result.
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behavior as that for the 2D checkerboard,13 i.e., «̄
'(«1«2)1/2 when u«1u@u«2u or vice versa. The exponen
value a of the 3D checkerboard has been calculated in
same manner as the 2D case. However, one million Fou
components in the present case means only 100 Fourier
tors in each direction, as opposed to 1000 Fourier vector
the 2D case. In order to enhance accuracy, we calculatea
as a function ofN, and extrapolated the exponent value
1/N50. The result givesa50.33. That implies the maxi-
mum N;100 used in the present calculation is insufficie
for the accurate determination of the 3D checkerboard ex
nent atx50. Thexm~x! for the 3D checkerboard is shown in
Fig. 3. It would indeed be interesting to compare the 3
checkerboard result with a more rigorous solution of t
electrostatic problem.

~6! In the last example, we use the present approach
calculate the«̄ of two random samples and check it again
the experimentally measured results. The random sam
consist of ten stainless steel spheres with a diameter of 1
dispersed in a cell with dimensions 5 mm35 mm31 mm,
filled with silicone oil («252.7). They are shown as insets t
Fig. 4. The ac capacitance of the samples is measured w
HP 4284A Precision LCR meter. The capacitance of the c
is given byC(v)5«0«̄(v)S/d ~in MKS units!, where«0 is
the vacuum dielectric constant,S is the area of the transvers

FIG. 3. The spectral function of the 3D checkerboard. The d
ferent heights of the 2D and 3D checkerboard spectral functi
reflect the different normalization constants for the first momen
p(12p)/d, whered is the spatial dimensionality.
e
er
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in

t
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e

to
t
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m
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cross section of the cell~5 mm2!, andd the length of the cell
~5 mm!. The effective dielectric constant is calculated wi
the given microstructure as the unit cell of a periodic stru
ture, in which the lattice constant in the thickness direction
purposely increased to 3 mm so as to minimize the interla
interaction. The dielectric constant of the stainless spher
given by is/«0v, with the conductivity s51.1
3104 V21 cm21 determined by fitting one data point~at 150
Hz! of the upper curve.14 Since the measured capacitance
almost purely imaginary, the results are plotted as
conductance/v. The calculation is done similar to the firs
example, with;105 Fourier components. It is seen that th
theory reproduces the experimental data quantitatively w
excellent consistency. The lower curve, in particular, is c
culated with no adjustable parameters.

CONCLUDING REMARKS

We have shown that the recursive-FFT approach, w
coupled with the sum rules of the spectral function, can g
accurate, efficient evaluation of the effective dielectric co
stant from arbitrary periodic microstructures. Application
the present approach to microtomography data is prese
under way. It should be noted that after this manuscript w
submitted, a similar work, utilizing the efficiency of FFT
was proposed by Moulinec and Suquet.15

-
s
,

FIG. 4. Ac conductance plotted as a function of frequency. D
monds and triangles represent experimentally data of the two
dom configurations shown as insets, measured along the horiz
direction. Calculated results are shown as solid and dashed l
The calculated and measured effective dielectric constants are i
range of 30i to 40i .
-

*Permanent address: Dept. of Physics, Jiaotung University, Sha
hai, People’s Republic of China.
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