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Dielectric-constant evaluation from microstructures
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We present an accurate, efficient algorithm for calculating the effective dielectric comstEnperiodic
two-component composites with arbitrary unit-cell microstructures. The algorithm is based on a formulation of
the relevant equations in the Bergman-Milton representation tfiat enables the use of the fast Fourier
transform in their solution, coupled with the sum rules of the geometric spectral function. Our approach
accurately reproduces known results, such as the two-dimensional checkerboard problem, and yields excellent
agreement with experimentally measured results on random configurations of metallic spheres.

INTRODUCTION ric spectral functionu(y). When this FFT approach is
coupled with the exact sum rules fai(y), accurate evalua-
Calculating the effective dielectric properties of heteroge-tion of e becomes possible as illustrated below, even when
neous materials is a classical problem in physics and matthe dielectric contrast between the two componetsie |,
ematics that dates back to the early works by Rayfeagid ~ approachese and touching microgeometries are present. In
Clausius-Mossottt.Its importance stems from one of the ba- particular, we show that our approach accurately reproduces
sic aims of materials research: relatifmedicting the mac-  the u(x) for the 2D checkerboard problem, as well as yields
roscopic optical and transport properties of inhomogeneougood agreement with experimentally measured results on
systems to(from) those of atomic or mesoscopic constitu- random configurations. These results imply that even for the
ents. In the past two decades, there has been a strong reviv@hdom composite case, as long as the geometric correlation
of interest in composite problems focused mostly on thdength is finite and not too large, our approach can yield
critical transport and geometric behaviors close to the percaeasonably accurate results by using unit cells larger than a
lation threshold. For the study of such characteristics it hagypical correlated volume.
been shown that the use of discretized models is sufficient to
yield the universal critical exponents and critical geometric FORMULATION
propertiess Away from the threshold, however, the nonuni-
versal character of the dielectric problem means the actua
microstructures have to be taken into account, and thus thg
full difficulty of the classical problem returns. Various effec- V.&(F)Vh=0 1)
tive medium theories have been formulated to calculate the
effective dielectric constarg of composites with different under the imposed condition of an external potenfigt z
types of microstructures, e.g., the Maxwell-Garnett theory(unit electric field in the z direction. By expressing
(for the dispersion microstructur® the Bruggeman's self- &()/e,=1—[#5(F)/s], wheres=e,/(e,—&,) is the only
consistent theoryfor the symmetric microstructuy@ the  material parameter in the problem andr) is the character-
theory for the granular microstructurggyr the differential  istic function, defined as;(f)=1 inside component 1 and
effective theory, originally due to Bruggemdfor the hier-  zero otherwise, Eq.1) becomes
archical microstructune”’ However, all effective medium
theories fail in terms of accurately relating an arbitrary mi- V2= EV, 2PV . @)
crostructure to its complex effective dielectric constant. In S
view of the recent developments in microtomography,
which can routinely generate three-dimensiof&)) micro-
structural data with microns resolution, the lack of a viable

| The basic task of effective dielectric constant calculation
the solution of the equation

A formal solution of Eq.(2) is possible by using the Green’s
function of the LaplacianG(F,r") = 1/4x|F—f'|:

theoretical approach to this problem represents a serious gap |p)=s(s—T)"1|z), (3)
in our ability to translate microstructural data into meaning- o
ful dielectric information. where the operatdr is given by
In this work, we present an accurate and efficient algo-
rithm for calculating the complex effective dielectric con- r:f df’ p(F")V'G(F—F")-V'. (4)

stant of periodic two-component composites with arbitrary
unit-cell microstructures. Our approach is based on a refortt should be noted thdt is a purely geometric operator as it
mulation of the relevant equations in the Bergman-Miltondepends only on the microstructure of the system. Under the
representation of,° that enables the use of the fast Fourier definition of the inner product

transform (FFT) in their solution process. A direct conse-
quence is that 18-10'. Fourier components can be easily
handled(on a workstatiohin the calculation of the geomet-

<¢|l/f>=f n(F)V S(F")- V' (" )dr", ©)
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the operatol’ is Hermitian, with eigenvalues confined in the (Glip)=a(qli),
interval[0,1]. From Egs(2)—(5), it is straightforward to ob- . L .
tain the Bergman-Milton representation of° the matrix multiplication may be expressed as a convolution
operation:

& m(x)

—=1—f dxy=1-F(s), (6) o ko~ i

& s—X 2, Teadly =25 | 3 n(k=a)dlia)+ 5 n(k—d)(dliy)
whereu(x) =1(z|x)|? is the geometric spectral function, and L
|x) denotes the eigenfunction of theoperator with eigen- R A2 (k& Al
value y. From Eq.(6) it is clear that if the spectral function 2k(k D n(k=a)dlia) - (10

is known accurately, the value efmay be simply obtained
even in the limit of high-contrast ratio, i.ég,/e,|—. Our
goal is thus the evaluation @f(y) from microstructure data.

That means the matrix multiplication can now be performed

with the help of FFT, thus reducing the total operations count

in one 3D matrix multiplication to 418*+ 3N? at the most.

For N=100, that translates to a gain oflid terms of effi-

ciency, thereby transforming a nearly impossible problem to

For systems with arbitrary periodic microstructures, it isone that is calculable.

advantageous to seek the solution of E).in the Fourier- The increased number of microstructure Fourier compo-

transformedk space. To this end, we first expres&r) nents, made pOSS|bI§ by the recursive FFT met.hod, enables

= ¢(F)—z as the periodic component of the potential thatthe accurate evaluatlon_ i) away from the po!nt;s(:_o.

deviates from the uniform field case. By writimg=ik ¢, However, neaty=0, which dominates the behavior ofin

Eq. (3) may be expressed %s thg Ilr'nlt. of |8'1/82.|—.>00, thl§ increase of calculatlona.I capa-

bility in itself is still insufficient to accurately determine the

R . correct quantitative behavior gf(y). Instead, we note that

Sa— E I'gag=k-&,7(k), (7) u(x) must satisfy the sum rules, which relate the values of
a0 u(x) near y=0 to the integrated value away from=0.
wherel s=k-§7(k—q) is the expression for thE operator Thus the accurate determination of the spectral function

in the wave vector space, and the overhat denotes a urfiv@y fromx=0 may be used to advantage in evaluating
vector. We wish to seek the eigenvalues and eigenfunction&(x) neary=0.

of T' by using the Lanczos recursion methiddThat is, let

|0)=(1/a)|z), with « being the normalization constant, and APPLICATION

define

THE SOLUTION APPROACH

In this section we illustrate our solution approach through
T ; ; ; different classes of examples.
Cli)=bj q|i+1)+a|i)+b;_4|i—1), 8 X X

[D=bisafi+1)+aili)+bi i 1) ® (1) Simple cubic array of closely spaced spheilest the
(by=0), where thea;’s and theb;’s are determined by the sphere dielectric constant lsg and that of the matrix be,.
conditions of orthogonality and normalization. Under this re-The sphere radius is denoted Ryand the lattice constant by
cursive transformatior, is tridiagonal and thus its eigenvec- a, wherea/2R=1.01, i.e., the spheres are closely spaced.
tors and eigenvalues can be easily calculated. By denotinfhe Fourier transform of the characteristic function is given
[x) as the eigenfunction with the uniform electric field com- by
ponent subtracted off, one can exprégs=2,;C¥|i). Since 4
the spectral function involves onlg€}, it is easy to show K) = 77 sinkR) — kR cog kR 11
from Egs.(6) and(7) that 7(k) (ka)3[ n(kR) IkR)]. (1)

We have carried out the recursive-FFT calculation of the
, 9) spectral functionu(y) with N=135, i.e., about 2.810°
Fourier components. In this case, since the spheres are sepa-
rated, the spectral function is known to have a gap extending
from y=0 to some finite value. In order to clearly identify

Cyl?
p+a22 | O|

cog
(S)—g > S x

wherep denotes the volume fraction of component 1. From

Eq. (9) it is simple to find the spectral function agu(x) this gap, we first broaden each eigenvalue with a suitably

— 2lCX|2
olln|?hotl .recursion aporoach. the most time-consuming o chosen width, e.g., 0.01. The peaks of the resulting continu-
S ' approach, t : ) Ng OPgys spectrum are then identified by checking the second de-
eration is the matrix multiplication. Sindé is a full-matrix,

one 3D matrix multiplication require® operations, where rl\zat)lv:e;)'; ;r(]e slpi:)truvryhe:;hge( whlolz)ip:;&rng _IS )f|2t/ by
N is the number of Fourier components along one direction’.uzx \/—'. 9 Xi i)y XoXi1Gi) = X~ Xi .
However, by defining two statelig) and|i,), as ai]/_ai 7 is a Gaussian. Th_e Iowe;t eigenvalue and its
' 2 ’ weight, y; andA,, are then slightly adjusted so that the two

SV P sum rules, the zeroth momebBt{A;=p and the first moment
<q||a> O If q Ov - e . . .
SixiAi=p(1—p)/3, are satisfied. The effective dielectric
constant is given by Eq6) with

1
:a<<j|i> otherwise,

Ai
F(s)=2> (12)

and T STXi
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FIG. 1. Calculated effective dielectric constants for a simple FIG. 2. The spectral function of the 2D checkerboard. The
cubic array of closely-spaced spheras,§ and an orthorhombic dashed line represents the analytical result.
array of closely-spaced spheroids;{>¢,,>¢3; in the three or-
thogonal directions plotted as a function o, /e,, assumed to be contribution aty=0. The weight of this partC, may be

real in the present case. Parameters are given in the text. The dashgétermined by the sum rule, since the part away frpm0

line is the accurate result calculated from the spherical basis fungnay be accurately evaluated from the recursive-FFT ap-
tions in real space. Maximum deviation of 0.3% is seen in theproach. For a simple cubic lattice with lattice constaraind
saturation value oksp, achieved in the limit ok, /e,— . width of the rodd=0.3a, the first moment, which is inde-
pendent ofC, can be evaluated as a function oN1/By

The calculated is plotted in Fig. 1 as a function af; /¢, extrapolating the results to N~0O, a value of 0.05650 is

taken to be real in this case. Here the dashed line is calcys .-y (for N=135, the first moment has the value of
lated by a real-space formalism with spherical harmonic b"?" .05566. This compa,res very favorably with the exact result

sis functions with accuracy to five decimal places. Compari s 4 056448 forp=0.216. The corresponding value Gf
son shows our present approach to be within 0.3% of the=0 1034. We find that high accuracy is generally possible
accurate value. It is interesting to note that due to the clos?Or biconﬁected systems

approach of the spheres, the asymptotic value of this (4) The 2D checkerboardrhe 2D checkerboard is a clas-

(Ii/lase, 6.‘56?2’ i? 4a:out h60% Iallrgehr 'Ejhanl the C]gu;ius- sical problem. Its self-dual property means the spectral func-
ossotti value of 4.4,, where only the dipole contribution " <t have the symmetry(x)=(1—x) z(1— x). In

is accounted for. fact, the spectral function is known analytically,w(x)

(2) Orthorhombic array of closely spaced ellipsaids _ ———, 12 . .
Whereas the case of spherical inclusions may be accurately X(1=x)/m, “ thus it presents an opportunity to check

) . r approach. In contrast to exampld$—(3); the checker-
calculated by using an alternative method, the advantage %c])ard is difficult in terms of obtaining accurate numerical

the present approach lies in its ability to handle arbitrary . 2 :
. . . . results because of their “just touching” geometry. In this
unit-cell microstructures. Accordingly, we next consider el-

lipsoids where the three semi-axes;y 8> vy, are in the ratio case,yu(y) should have a power-law behavior in the neigh-

of 1:0.8:0.7. The orthorhombic lattice constaatsa,,a; in borhood ofy=0 andy=1 as deduced from the percolation

the three directions are 2.02, 1.62, and 1.42, respectively, i'hheory. Accordingly, we use the recursive-FFT approach to

units of @. The Fourier transform of the characteristic func- calculate)(;i(x), but replaces_ the result in th_e intervakly
fion is given by <A by ax®(1+by) (and similarly for the interval +A

<x=<1 through the symmetry relatiopnThe four param-

. 4maBy eters,a,a,b,A are to be optimally determined by the four
(k)= i P (sink— k cOSk), (13)  requirements: the two sum rules plus the two continuity con-
14243

ditions for both the value and the first derivative yf(x).
where k= \/(a2k§+ ,82k§+ y2k§) Y2 The calculateds;;  The results on the 2D checkerboard, witl O° Fourier com-
>%,,>€33 are shown in Fig. 1. Since the first moments of ponents, yield the exponent value=0.5+0.05, in good
the spectral function are different along the three orthogonatgreement with the analytical result. The resultipg(x) is
directions, in contrast to the case of the spheres, they have g@mpared with the exact expressi@ashed lingin Fig. 2.
be evaluated from the characteristic function as (5) The 3D checkerboardAgain the spectral function
should have the property thge(x) =(1—x)x(1—x). The
Fourier transform of the characteristic function is given by

> (=K (k)2 , k2.

k#0 - sin(k,a/2)sin(k,a/2)sin(kza/2)
The results in the present case are 0.07564, 0.08412, and n(k)=8 k,K ka3 ’ (14)
0.09022, respectively, along tlé¢l), y(2), andz(3) direc-
tions. wherea is the edge length of the cube, no analytical result is

(3) Interpenetrating frames consisting of orthogonally in- known as yet. But based on the assumption of edge-
tersecting rods with square cross sectioAs both compo- conduction dominance, it has been argued that asymptoti-
nents percolate, the spectral function has a delta functionally, thee for the 3D checkerboard should have the same
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FIG. 4. Ac conductance plotted as a function of frequency. Dia-
FIG. 3. The spectral function of the 3D checkerboard. The dif-monds and triangles represent experimentally data of the two ran-
ferent heights of the 2D and 3D checkerboard spectral function§lom configurations shown as insets, measured along the horizontal
reflect the different normalization constants for the first momentsdirection. Calculated results are shown as solid and dashed lines.
p(1—p)/d, whered is the spatial dimensionality. The calculated and measured effective dielectric constants are in the
range of 30 to 40.

behavior as that for the 2D checkerbodfdj.e., &  cross section of the celb mnt), andd the length of the cell
~(e18,)Y? when |e4|>]|e,| or vice versa. The exponent (5 mm). The effective dielectric constant is calculated with
value a of the 3D checkerboard has been calculated in théhe given microstructure as the unit cell of a periodic struc-
same manner as the 2D case. However, one million Fouridtre, in which the lattice constant in the thickness direction is
components in the present case means only 100 Fourier veBUrPOSely increased to 3 mm so as to minimize the interlayer
tors in each direction, as opposed to 1000 Fourier vectors jiteraction. The dielectric constant of the stainless sphere is
the 2D case. In order to enhance accuracy, we calculated 9'VEN P}’ 'f’l/SO“" with ~the ~ conductivity o=1.1

as a function ofN, and extrapolated the exponent value to > 10° Q" *cm determined by fitting one data poifet 150
1/N=0. The result givesy=0.33. That implies the maxi- Hz) of the upper cur\_/é. Since the measured capacitance is
mum N~ 100 used in the present calculation is insufficient2lMost purely imaginary, the results are plotted as ac
for the accurate determination of the 3D checkerboard exposonductances. The calculation is done similar to the first
nent aty=0. The yu(y) for the 3D checkerboard is shown in example, with~10° Fourier cpmponents. It is se_en.that thg
Fig. 3. It would indeed be interesting to compare the 3Dt"€OTY reproduces the experimental data quantitatively with
checkerboard result with a more rigorous solution of theexcellent _con5|ster_lcy. The lower curve, in particular, is cal-
electrostatic problem. culated with no adjustable parameters.

(6) In the last example, we use the present approach to
calculate thes of two random samples and check it against
the experimentally measured results. The random samples We have shown that the recursive-FFT approach, when
consist of ten stainless steel spheres with a diameter of 1 meoupled with the sum rules of the spectral function, can give
dispersed in a cell with dimensions 5 b mmx1 mm, accurate, efficient evaluation of the effective dielectric con-
filled with silicone oil (¢,=2.7). They are shown as insets to stant from arbitrary periodic microstructures. Application of
Fig. 4. The ac capacitance of the samples is measured withthe present approach to microtomography data is presently
HP 4284A Precision LCR meter. The capacitance of the celinder way. It should be noted that after this manuscript was
is given byC(w)=¢ege(w)S/d (in MKS units), whereeg is  submitted, a similar work, utilizing the efficiency of FFT,
the vacuum dielectric constar8js the area of the transverse was proposed by Moulinec and Suqtrt.
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