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Molecular systems:

+ Vn

N p2
H(X) =), om
1=1

In most cases the interaction part can be approximated by
pair interactions:

1
VN = 5 Z U(I'Z'—I'j)
0,J317]
One famous example is the Lennard-Jones potential
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A very important quantity in statistical mechanics 1is

the pair correlation function g(r,r’), defined as

V2
g(r,r') = E /V d°rs3d’ry - - - d°r N exp [—BVy (v, 1, r3 .- ,rn)|,

where
ZN:/ d37“1d3r2---d3rNexp[—6VN (I‘l,I‘Q,I'g,--- ,I‘N)].
\%

[t may also be written as

g(r,r’): <Z o(r—r1;) r—rj)>.

38 #]
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For a homogeneous system the pair correlation function
depends only on the distance between r and r’ . In this
case we denote it as g(r).

The g(r,r") is proportional to the probability that
given a particle at point r and find another particle at
point v’ . At large distances g(r) tends to 1, we may

define the total correlation function

h(r)=g(r)—1.

The Fourier transform of the above function gives the

static structure function (or structure factor)

S (k) = 1—%7zj/iz(r)eﬂ°rd3r.
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The structure function is defined as the correlation
function of Fourier component of density fluctuations

S (k) — (An_kAnk>

1
N
The density is defined as n(r)::EZ?féﬁ?——rﬁ

and the density fluctuation is Z&n(r):::23?75(r——13)——
and its Fourier component is:Amn, = fdr An(r)e_ik'r
ZN e tkTi _ N(Sk,o

1

| <[=

1 1 K- (r; —1
S(k) — N <An_kAnk> — N Z;j <ezk( i .7)> +1— N(Sk,O



B FiRE

S (k) + N 0
L 1 ik-(r;—1;)
N<An kAnk> N Z<€ >—|—1
17307]
/drdr’eZk vt Z d(r—r)0( —r;))+1
%J V£
N

= /drdr’ezk(r 1”)g(r—r’)%—l

=1+ <n —~ ‘1/> /drg(r)eik'r

— 14+ (n _ ‘1/) /drh(r)eik'r + (N — 1)dk,0
MARFE T IR, 2020t B 5 4 m] DLRE 25
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The structure factor can be measured directly by scat-—
tering experiments and can also be calculated by simu-
lations.
Many physical quantities can be expressed in terms of
the pair correlation function, for example the energy in
NVT ensemble is

N
E = gNkBT—I— 5 d°rv(r)g(r).

The pressure 1is

BP B /-
— 1——N<Zl"i‘viVN>

1=1

o

1 —

| ™

n / d*r r-Vou (r)g(r).
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The compressibility

kpT (%Z)T:1+n/d3r(g(r)—l).

This expression can be derived from the fluctuations of

particle numbers

d (N) (N)? [0V
N2 — (N)? = kpT (_> kT |
< > ou TV V2 \oP T.(N)
Since n::-%§zw dV = %%%dn, SO
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On the other hand, it can be proved that

(V) = 0 = ) (140 [ @rig) - D).

We have the final result.
The time correlation function 1s the correlations of

two physical quantities at different times,
Cap(t,t') = (A(t)B(t)) .

For systems at equilibrium the time correlation function
is a function of the time difference only and can be

written as

Cap(t) = (A(t)B(0)).
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The velocity auto correlation function of the 1ith

particle 1is

Cuy (t) = (vi (t) - vi (0)) .

Which is related to the diffusion constant of the par-
ticle.

Dz%/ooodt(v(t)-v(()»

This can be derived from the definition (we will back to

this point)

(s (t) =1 (0))*) = 6Dt

which holds for large t.
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In general, a transport coefficient is defined in

terms of the response of a system to a perturbation.

yzfooodt<A(t)A(0)>

where ~ is the transport coefficient, and A is a physi-
cal variable appearing in the perturbation Hamiltonian.
There is also an Einstein relation associated with this

kind of expression

((A(t) = A(0)*) = 27t

which holds for large t, (t> 7, where 7 is the relax-—

ation time of A).
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The shear viscosity n is given by

e kBLT o (Pap (t) Pap (0))
kBT (Qap (1) Qap (0)) = 2nt.
Here

The negative of P, 1s often called stress tensor.
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Monte Carlo simulation of Particle Systems

R ¥ R4S Monte Carlo FEHLFIHEBE RS HE N & —FEHT,
Metropolis HiEN:

L, BENLEIRR LI — R, HAEREN v, KR
(HEE2]

r; = x; + d, (ran() — 0.5)
y; = y; +d, (ran() — 0.5)
z; = z; +d, (ran() — 0.5)
2, IWHATEMREZE, RE-TEZEI.
3, LRI E, WEREEE, THEYHE.
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Molecular dynamics simulations

MD method is essentially the integration of the equation of
motion of the classical many-particle system in a period of
time. The trajectories of the system in the phase space
are thus obtained and averages of the trajectories give
various physical properties. Since we work on real
dynamics in MD simulations we can also study the
dynamic properties of the system such as relaxation to
equilibrium, transport etc.
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Consider a rectangular volume of L X Lo X L3z, with N
classical particles put in. The particles are interact
with each other. In principle, the interaction includes
pair interactions, three body interactions as well as
many body interactions. For simplicity we will consider
here only pair interactions. In this case each particle
feel a force by all other particles and we further assume
the force depends only on distances from other particles
and for each pair the force directed along the line join
the pair of particles. So the force on the ith particle
1S

Fi= Y F(lri—r;)ry,

J=1,N;j#i

where r;; is an unit vector along r; —rj.
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Periodic boundary condition(PBC)
Fppo (ri — 1 ZF( rj+ZLu”u>

where L, are vectors along
the edges of the rectangular .. . .. .
system volume and the sum over ° . ° .
n is with all integers n,. .. T )
Usually this sum is the most ° e //fif
time consuming part in a sim— . .
ulation. A P




General procedure of MD (NVE ensemble)

1. Initialize;

2. Start simulation and let the system reach
equilibrium;

3. Continue simulation and store results.
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Initialize:

1, Specify the number of particles and interaction;
2, Setup the simulation box;

3, Specify the total energy of the system,

4, Assign position and momenta of each particle.

a, In many cases we assign particles in a FCC lattice,
If we use cubic unit cell and cube BOX then the number of particles per
unit cell is 4, and the total numbers of particles are 4M3, M=1,2,3,--- . That
IS we may simulate systems with total number of particles N=108, 256, 500,

864, ---.

b, The velocities of particles are draw from a Maxwell

distribution with the specified temperature.

This is accomplished by drawing the three components of the velocity
from the Gaussian distribution.
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The distribution of the x—component of velocity is

2

P(vg) o exp [— 27:;:%] .
Draw numbers from a Gaussian:
Consider:

mu> mu? m (v2 + 112)
P(v, — z _ Yy | — _ z Y

(g, vy) X €Xp [ 2kBT] exp ! T exp T
Then
P(vg, vy )dvgdv, = P(v)vdvde,

where v = w2 4+ v, and

3 2
P(v) o exp [— ;Z;]T] .
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So the distribution of v, and v, may be obtained from
v and ¢.

The distribution of wv:

P(v) o vexp [— ULl ]

2kpT

The distribution of ¢ is uniform in the interval [0, 2x].
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Generate random numbers for a given
distribution

For a given distribution P(y) we consider how to get
a random number y draw from P(y) from a random number
x draw from uniform [0,1], i.e., we are going to find a
function f(x), from which for a series of random numbers
r distributed uniformly in the interval [0,1], y = f(x)
will distributed according to P(y).
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Since

then

Exponential distribution

0, y <0
P(y)_{ )\e_Ay, y >0

Fo)= [ P(y')dy'{ VR

1—e ™, y>0
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The distribution of wv:

m

P(v) = =

mau? }

veRb {_ 2T

v 2 2

m e o d e e + 1
— vexp |— V= —exp |— .
kT Jo © 0T 2kpT P okgT

v = \/—kBT In(1—x)

m
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Draw random numbers uniformly distributed in the in-
terval |0, 27].

Uy = UV COS ¢
vy = VSIng

Another method of draw random numbers in the Gaussian
distribution is through the following empirical methods.

Consider the distribution

eX aj2
P17
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According to the central limit theorem, 1f we draw
uniform random numbers r; in interval [0,1], and define a

variable
1 n 1
. 5?§:¢=17% 2
1
12n

when n > 1 the distribution of & is the Gaussian dis-
tribution

§

If we take n =12, we get

12
"S:ZT@ — 0.
1=1
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After the generation of the velocity of each particle,
we may shift the velocity so that the total momentum 1is
Zero.

The standard Verlet algorithm is the first successful
method in history and still wide used today in different

forms. It 1is

r(t+h)=2r(t)—r(t—h)+hF(r(t)/m

o) — r(t+h)2—hr(t—h).

To start the integration we need r(h), given by

r (h) =1 (0) + hv (0) + h*F (r (0)) /m.
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Variations of this method are

V(t+h/2) =v(t—h/2) 4+ RF(r ()
r(t+h) =1 (t) +hv(t+h/2).

and

r(t+h)=1(t)+hv(t)+ hF (r(t))

t+h)+F(r(t))
; .

V(4R = v () + h

Both of these variations are mathematically equivalent to
the original one but more stable under finite precision

arithmetic.
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The temperature of the system is given by the equal
partition theorem, that is the average of kinetic energy

of each degree of freedom is half kg7,

N
3 1 1
“bnTh — — “mw? )
o B lp N1+ <2va>

The N—1 is due to the conservation of the total momentum
which reduce the degree of freedom by 3.
To reach the desired temperature we may scale the

velocity at every few steps of integration

V; (t) — >\Vz' (t)

v [N =1 3ksT
§:£ilfnv§
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After the system reach to equilibrium the integration
continue in the same method as above without scaling of
velocity. The data are stored or accumulated for the
calculating of physical properties. The static proper-—
ties of physical quantity A is given by time average
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here A, is the value of A at vth time step.

the data stored in each step include:

N
1, the kinetic energy Z %mvg

2, the potential energy U = D v (7ij)
(2,7)

3, the virial Z Tij =
iJ

Usually
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We also need data to calculate the pair correlation
function, this is done by divide the interval [0,r] into
sub intervals [ir,(¢ + 1)r], at each stage of updating,
add the number of pairs with separation in the interval
lir, (i + 1)r], to an array n(i) and find the average value

after simulation, the pair correlation function is given
by

2V {n(r))
N (N —1)4nr?Ar

g(r)=



s I 2 ED

— LB MDA Fr JE -

Lammps:
Gromacs:

Ccpbo:
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http://lammps.sandia.gov/
http://www.gromacs.org/
http://www.ccp5.ac.uk/
http://netlib.org/

