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”Die Energie der Welt ist constant.
Die Entropie der Welt strebt einem Maximum zu.”

CLAUSIUS.∗

THE comprehension of the laws which govern any material system is greatly
facilitated by considering the energy and entropy of the system in the various
states of which it is capable. As the difference of the values of the energy for
any two states represents the combined amount of work and heat received or
yielded by the system when it is brought from one state to the other, and the
difference of entropy is the limit of all the possible values of the integral

ş dQ

t
,

(dQ denoting the element of the heat received from external sources, and t the
temperature of the part of the system receiving it,) the varying values of the
energy and entropy characterize in all that is essential the effects producible
by the system in passing from one state to another. For by mechanical and
thermodynamic contrivances, supposed theoretically perfect, any supply of
work and heat may be transformed into any other which does not differ from
it either in the amount of work and heat taken together or in the value of the
integral

ş dQ

t
. But it is not only in respect to the external relations of a system

that its energy and entropy are of predominant importance. As in the case of
simply mechanical systems, (such as are discussed in theoretical mechanics,)
which are capable of only one kind of action upon external systems, viz. the
performance of mechanical work, the function which expresses the capability
of the system for this kind of action also plays the leading part in the theory
of equilibrium, the condition of equilibrium being that the variation of this
function shall vanish, so in a thermodynamic system, (such as all material
systems actually are,) which is capable of two different kinds of action upon
external systems, the two functions which express the twofold capabilities of
the system afford an almost equally simple criterion of equilibrium.

∗ Pogg. Ann. Bd. cxxv. (1865̄), S.400; or Mechanische Wärmetheorie, Abhand. ix. S.44.
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Criteria of Equilibrium and Stability.

The criterion of equilibrium for a material system which is isolated from all ex-
ternal influences may be expressed in either of the following entirely equivalent
forms:

I. For the equilibrium of any isolated system it is necessary and sufficient
that in all possible variations of the state of the system which do not alter
its energy, the variation of its entropy shall either vanish or be negative. If ε
denote the energy, and η the entropy of the system, and we use a subscript
letter after a variation to indicate a quantity of which the value is not to be
varied, the condition of equilibrium may be written

pδηqε ő 0. (1)

II. For the equilibrium of any isolated system it is necessary and sufficient
that in all possible variations in the state of the system which do not alter its
entropy, the variation of its energy shall either vanish or be positive. This
condition may be written

pδεqη ŕ 0. (2)

That these two theorems are equivalent will appear from the consideration
that it is always possible to increase both the energy and the entropy of the
system, or to decrease both together, viz., by imparting heat to any part of the
system or by taking it away. For if condition (1) is not satisfied, there must
be some variation in the state of the system for which

δη ą 0 and δε “ 0;

therefore, by diminishing both the energy and the entropy of the system in its
varied state, we shall obtain a state for which (considered as a variation from
the original state)

δη “ 0 and δε ă 0;

therefore condition (2) is not satisfied. Conversely, if condition (2) is not
satisfied, there must be a variation in the state of the system for which

δε ă 0 and δη “ 0;
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hence there must also be one for which

δε “ 0 and δη ą 0;

therefore condition (1) is not satisfied.
The equations which express the condition of equilibrium, as also its state-

ment in words, are to be interpreted in accordance with the general usage in
respect to differential equations, that is, infinitesimals of higher orders than
the first relatively to those which express the amount of change of the system
are to be neglected. But to distinguish the different kinds of equilibrium in
respect to stability, we must have regard to the absolute values of the vari-
ations. We will use ∆ as the sign of variation in those equations which are
to be construed strictly, i.e., in which infinitesimals of the higher orders are
not to be neglected. With this understanding, we may express the necessary
and sufficient conditions of the different kinds of equilibrium as follows; —for
stable equilibrium

p∆ηqε ă 0, i.e. p∆εqη ą 0; (3)
for neutral equilibrium there must be some variations in the state of the system
for which

p∆ηqε “ 0, i.e., p∆εqη “ 0; (4)
while in general

p∆ηqε ő 0, i.e., p∆εqη ŕ 0; (5)
and for unstable equilibrium there must be some variations for which

p∆ηqε ą 0, (6)

i.e., there must be some for which

p∆εqη ă 0, (7)

while in general
pδηqε ő 0, i.e., pδεqη ŕ 0. (8)

In these criteria of equilibrium and stability, account is taken only of possible
variations. It is necessary to explain in what sense this is to be understood. In
the first place, all variations in the state of the system which involve the trans-
portation of any matter through any finite distance are of course to be excluded
from consideration, although they may be capable of expression by infinitesi-
mal variations of quantities which perfectly determine the state of the system.
For example, if the system contains two masses of the same substance, not in
contact, nor connected by other masses consisting of or containing the same
substance or its components, an infinitesimal increase of the one mass with an
equal decrease of the other is not to be considered as a possible variation in
the state of the system. In addition to such cases of essential impossibility,
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if heat can pass by conduction or radiation from every part of the system to
every other, only those variations are to be rejected as impossible, which in-
volve changes which are prevented by passive forces or analogous resistances
to change. But, if the system consist of parts between which there is supposed
to be no thermal communication, it will be necessary to regard as impossible
any diminution of the entropy of any of these parts, as such a change can not
take place without the passage of heat. This limitation may most conveniently
be applied to the second of the above forms of the condition of equilibrium,
which will then become

pδεqη1,η2, etc. ŕ 0, (9)
η1, η2, etc., denoting the entropies of the various parts between which there
is no communication of heat. When the condition of equilibrium is thus ex-
pressed, the limitation in respect to the conduction of heat will need no farther
consideration.

In order to apply to any system the criteria of equilibrium which have been
given, a knowledge is requisite of its passive forces or resistances to change,
in so far at least, as they are capable of preventing change. (Those passive
forces which only retard change, like viscosity, need not be considered.) Such
properties of a system are in general easily recognized upon the most superficial
knowledge of its nature. As examples, we may instance the passive force of
friction which prevents sliding when two surfaces of solids are pressed together,
— that which prevents the different components of a solid, and sometimes of
a fluid, from having different motions one from another, — that resistance to
change which sometimes prevents either of two forms of the same substance
(simple or compound), which are capable of existing, from passing into the
other, — that which prevents the changes in solids which imply plasticity, (in
other words, changes of the form to which the solid tends to return,) when the
deformation does not exceed certain limits.

It is a characteristic of all these passive resistances that they prevent a
certain kind of motion or change, however the initial state of the system may
be modified, and to whatever external agencies of force and heat it may be
subjected, within limits, it may be, but yet within limits which allow finite
variations in the values of all the quantities which express the initial state
of the system or the mechanical or thermal influences acting on it, without
producing the change in question. The equilibrium which is due to such passive
properties is thus widely distinguished from that caused by the balance of the
active tendencies of the system. where an external influence, or a change in
the initial state, infinitesimal in amount, is sufficient to produce change either
in the positive or negative direction. Hence the ease with which these passive
resistances are recognized. Only in the case that the state of the system lies so
near the limit at which the resistances cease to be operative to prevent change,
as to create a doubt whether the case falls within or without the limit, will a
more accurate knowledge of these resistances be necessary.
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To establish the validity of the criterion of equilibrium, we will consider first
the sufficiency, and afterwards the necessity, of the condition as expressed in
either of the two equivalent forms.

In the first place, if the system is in a state in which its entropy is greater
than in any other state of the same energy, it is evidently in equilibrium, as
any change of state must involve either a decrease of entropy or an increase
of energy, which are alike impossible for an isolated system. We may add
that this is a case of stable equilibrium, as no infinitely small cause (whether
relating to a variation of the initial state or to the action of any external bodies)
can produce a finite change of state, as this would involve a finite decrease of
entropy or increase of energy.

We will next suppose that the system has the greatest entropy consistent
with its energy, and therefore the least energy consistent with its entropy, but
that there are other states of the same energy and entropy as its actual state.
In this case, it is impossible that any motion of masses should take place; for if
any of the energy of the system should come to consist of vis viva (of sensible
motions), a state of the system identical in other respects but without the
motion would have less energy and not less entropy, which would be contrary
to the supposition. (But we cannot apply this reasoning to the motion within
any mass of its different components in different directions, as in diffusion,
when the momenta of the components balance one another.) Nor, in the case
supposed, can any conduction of heat take place, for this involves an increase
of entropy, as heat is only conducted from bodies of higher to those of lower
temperature. It is equally impossible that any changes should be produced
by the transfer of heat by radiation. The condition which we have supposed
is therefore sufficient for equilibrium, so far as the motion of masses and the
transfer of heat are concerned, but to show that the same is true in regard
to the motions of diffusion and chemical or molecular changes, when these
can occur without being accompanied or followed by the motions of masses
or the transfer of heat, we must have recourse to considerations of a more
general nature. The following considerations seem to justify the belief that
the condition is sufficient for equilibrium in every respect.

Let us suppose, in order to test the tenability of such a hypothesis, that a
system may have the greatest entropy consistent with its energy without being
in equilibrium. In such a case, changes in the state of the system must take
place, but these will necessarily be such that the energy and the entropy will
remain unchanged and the system will continue to satisfy the same condition,
as initially, of having the greatest entropy consistent with its energy. Let us
consider the change which takes place in any time so short that the change
may be regarded as uniform in nature throughout that time. This time must
be so chosen that the change does not take place in it infinitely slowly, which is
always easy, as the change which we suppose to take place cannot be infinitely
slow except at particular moments. Now no change whatever in the state of

5



the system, which does not alter the value of the energy, and which commences
with the same state in which the system was supposed at the commencement
of the short time considered, will cause an increase of entropy. Hence, it will
generally be possible by some slight variation in the circumstances of the case
to make all changes in the state of the system like or nearly like that which is
supposed actually to occur, and not involving a change of energy, to involve a
necessary decrease of entropy, which would render any such change impossible.
This variation may be in the values of the variables which determine the state
of the system, or in the values of the constants which determine the nature
of the system, or in the form of the functions which express its laws, —only
there must be nothing in the system as modified which is thermodynamically
impossible. For example, we might suppose temperature or pressure to be
varied, or the composition of the different bodies in the system, or, if no small
variations which could be actually realized would produce the required result,
we might suppose the properties themselves of the substances to undergo vari-
ation, subject to the general laws of matter. If, then, there is any tendency
toward change in the system as first supposed, it is a tendency which can be
entirely checked by an infinitesimal variation in the circumstances of the case.
As this supposition cannot be allowed, we must believe that a system is always
in equilibrium when it has the greatest entropy consistent with its energy, or,
in other words, when it has the least energy consistent with its entropy.

The same considerations will evidently apply to any case in which a system
is in such a state that ∆η ő 0 for any possible infinitesimal variation of the
state for which ∆ε “ 0, even if the entropy is not the greatest of which the
system is capable with the same energy. (The term possible has here the
meaning previously defined, and the character ∆ is used, as before, to denote
that the equations are to be construed strictly, i.e., without neglect of the
infinitesimals of the higher orders.)

The only case in which the sufficiency of the condition of equilibrium which
has been given remains to be proved is that in which in our notation δη ő 0 for
all possible variations not affecting the energy, but for some of these variations
∆η ą 0, that is, when the entropy has in some respects the characteristics
of a minimum. In this case the considerations adduced in the last paragraph
will not apply without modification, as the change of state may be infinitely
slow at first, and it is only in the initial state that the condition δηε ő 0
holds true. But the differential coefficients of all orders of the quantities which
determine the state of the system, taken with respect of the time, must be
functions of these same quantities. None of these differential coefficients can
have any value other than 0, for the state of the system for which δηε ő 0. For
otherwise, as it would generally be possible, as before, by some infinitely small
modification of the case, to render impossible any change like or nearly like
that which might be supposed to occur, this infinitely small modification of the
case would make a finite difference in the value of the differential coefficients
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which had before the finite values, or in some of lower orders, which is contrary
to that continuity which we have reason to expect. Such considerations seem
to justify us in regarding such a state as we are discussing as one of theoretical
equilibrium; although as the equilibrium is evidently unstable, it cannot be
realized.

We have still to prove that the condition enunciated is in every case neces-
sary for equilibrium. It is evidently so in all cases in which the active tendencies
of the system are so balanced that changes of every kind, except those excluded
in the statement of the condition of equilibrium, can take place reversibly, (i.e.,
both in the positive and the negative direction, ) in states of the system dif-
fering infinitely little from the state in question. In this case, we may omit the
sign of inequality and write as the condition of such a state of equilibrium

pδηqε “ 0, i.e., pδεqη “ 0. (10)

But to prove that the condition previously enunciated is in every case necessary,
it must be shown that whenever an isolated system remains without change, if
there is any infinitesimal variation in its state, not involving a finite change of
position of any (even an infinitesimal part) of its matter, which would diminish
its energy by a quantity which is not infinitely small relatively to the variations
of the quantities which determine the state of the system, without altering its
entropy, — or, if the system has thermally isolated parts, without altering
the entropy of any such part, — this variation involves changes in the system
which are prevented by its passive forces or analogous resistances to change.
Now, as the described variation in the state of the system diminishes its energy
without altering its entropy, it must be regarded as theoretically possible to
produce that variation by some process, perhaps a very indirect one, so as to
gain a certain amount of work (above all expended on the system). Hence
we may conclude that the active forces or tendencies of the system favor the
variation in question, and that equilibrium cannot subsist unless the variation
is prevented by passive forces.

The preceding considerations will suffice, it is believed, to establish the
validity of the criterion of equilibrium which has been given. The criteria of
stability may readily be deduced from that of equilibrium. We will now proceed
to apply these principles to systems consisting of heterogeneous substances
and deduce the special laws which apply to different classes of phenomena.
For this purpose we shall use the second form of the criterion of equilibrium,
both because it admits more readily the introduction of the condition that
there shall be no thermal communication between the different parts of the
system, and because it is more convenient, as respects the form of the general
equations relating to equilibrium, to make the entropy one of the independent
variables which determine the state of the system, than to make the energy
one of these variables.
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The Conditions of Equilibrium for Heterogeneous
Masses in Contact when Uninfluenced by Gravity,
Electricity, Distortion of the Solid Masses, or Capillary
Tensions.

In order to arrive as directly as possible at the most characteristic and essen-
tial laws of chemical equilibrium, we will first give our attention to a case of
the simplest kind. We will examine the conditions of equilibrium of a mass
of matter of various kinds enclosed in a rigid and fixed envelop, which is im-
permeable to and unalterable by any of the substances enclosed, and perfectly
non-conducting to heat. We will suppose that the case is not complicated by
the action of gravity, or by any electrical influences, and that in the solid por-
tions of the mass the pressure is the same in every direction. We will farther
simplify the problem by supposing that the variations of the parts of the energy
and entropy which depend upon the surfaces separating heterogeneous masses
are so small in comparison with the variations of the parts of the energy and
entropy which depend upon the quantities of these masses, that the former
may be neglected by the side of the latter; in other words, we will exclude the
considerations which belong to the theory of capillarity.

It will be observed that the supposition of a rigid and nonconducting en-
velop enclosing the mass under discussion involves no real loss of generality,
for if any mass of matter is in equilibrium, it would also be so, if the whole or
any part of it were enclosed in an envelop as supposed: therefore the condi-
tions of equilibrium for a mass thus enclosed are the general conditions which
must always be satisfied in case of equilibrium. As for the other suppositions
which have been made, all the circumstances and considerations which are
here excluded will afterward be made the subject of special discussion.

Conditions relating to the Equilibrium between the ini-
tially existing Homogeneous Parts of the given Mass.

Let us first consider the energy of any homogeneous part of the given mass, and
its variation for any possible variation in the composition and state of this part.
(By homogeneous is meant that the part in question is uniform throughout,
not only in chemical composition, but also in physical state.) If we consider
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the amount and kind of matter in this homogeneous mass as fixed, its energy
ε is a function of its entropy η, and its volume v. and the differentials of these
quantities are subject to the relation

dε “ tdη ´ pdv. (11)
t denoting the (absolute) temperature of the mass, and p its pressure. For tdη
is the heat received, and pdv the work done, by the mass during its change of
state. But if we consider the matter in the mass as variable, and write m1,m2,
. . .mn for the quantities of the various substances S1, S2, . . . Sn of which the
mass is composed, ε will evidently be a function of η, v,m1,m2, . . .mn, and we
shall have for the complete value of the differential of ε

dε “ tdη ´ pdv ` µ1dm1 ` µ2dm2 . . . ` µndmn, (12)
µ1, µ2 . . . µn denoting the differential coefficients of ε taken with respect to
m1,m2, . . .mn.

The substances S1, S2, . . . Sn of which we consider the mass composed, must
of course be such that the values of the differentials dm1, dm2, . . . dmn shall be
independent, and shall express every possible variation in the composition of
the homogeneous mass considered, including those produced by the absorption
of substances different from any initially present. It may therefore be necessary
to have terms in the equation relating to component substances which do not
initially occur in the homogeneous mass considered, provided, of course, that
these substances, or their components, are to be found in some part of the
whole given mass.

If the conditions mentioned are satisfied, the choice of the substances which
we are to regard as the components of the mass considered, may be deter-
mined entirely by convenience, and independently of any theory in regard to
the internal constitution of the mass. The number of components will some-
times be greater, and sometimes less, than the number of chemical elements
present. For example, in considering the equilibrium in a vessel containing
water and free hydrogen and oxygen, we should be obliged to recognize three
components in the gaseous part. But in considering the equilibrium of dilute
sulphuric acid with the vapor which it yields. We should have only two com-
ponents to consider in the liquid mass, sulphuric acid (anhydrous, or of any
particular degree of concentration) and (additional) water. If, however, we are
considering sulphuric acid in a state of maximum concentration in connection
with substances which might possibly afford water to the acid, it must be no-
ticed that the condition of the independence of the differentials will require
that we consider the acid in the state of maximum concentration as one of the
components. The quantity of this component will then be capable of variation
both in the positive and in the negative sense, while the quantity of the other
component can increase but cannot decrease below the value 0.

For brevity’s sake, we may call a substance Sα an actual component of any
homogeneous mass, to denote that the quantity ma of that substance in the
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given mass may be either increased or diminished (although we may have so
chosen the other component substances that ma “ 0 ); and we may call a
substance Sb a possible component to denote that it may be combined with,
but cannot be subtracted from the homogeneous mass in question. In this
case, as we have seen in the above example, we must so choose the component
substances that mb “ 0.

The units by which we measure the substances of which we regard the given
mass as composed may each be chosen independently. To fix our ideas for the
purpose of a general discussion, we may suppose all substances measured by
weight or mass. Yet in special cases, it may be more convenient to adopt
chemical equivalents as the units of the component substances.

It may be observed that it is not necessary for the validity of equation (I2)
that the variations of nature and state of the mass to which the equation refers
should be such as do not disturb its homogeneity, provided that in all parts
of the mass the variations of nature and state are infinitely small. For, if this
last condition be not violated, an equation like (12) is certainly valid for all
the infinitesimal parts of the (initially) homogeneous mass; i.e., if we write Dε,
Dη, etc., for the energy, entropy, etc., of any infinitesimal part,

dDε “ tdDη ´ pdDv ` µ1dDm1 ` µ2dDm2 . . . ` µndDmn (13)

whence we may derive equation (l2) by integrating for the whole initially ho-
mogeneous mass.

We will now suppose that the whole mass is divided into parts so that
each part is homogeneous, and consider such variations in the energy of the
system as are due to variations in the composition and state of the several parts
remaining (at least approximately) homogeneous, and together occupying the
whole space within the envelop. We will at first suppose the case to be such
that the component substances are the same for each of the parts, each of
the substances S1, S2 . . . Sn being an actual component of each part. If we
distinguish the letters referring to the different parts by accents, the variation
in the energy of the system may be expressed by δε1 ` δε2` etc., and the
general condition of equilibrium requires that

δε1 ` δε2 ` etc. ŕ 0 (14)

for all variations which do not conflict with the equations of condition. These
equations must express that the entropy of the whole given mass does not vary,
nor its volume, nor the total quantities of any of the substances S1, S2, . . . Sn.

We will suppose that there are no other equations of condition. It will then
be necessary for equilibrium that

t1δη1 ´ p1δv1 ` µ1
1δm

1
1 ` µ1

2δm
1
2 . . . ` µ1

nδm
1
n

` t2δη2 ´ p2δv2 ` µ2
1δm

2
1 ` µ2

2δm
2
2 . . . ` µ2

nδm
2
n

` etc. ŕ 0

(15)
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for any values of the variations for which

δη1 ` δη2 ` δη3 ` etc. “ 0, (16)

δv1 ` δv2 ` δv3 ` etc. “ 0, (17)

δm1
1 ` δm2

1 ` δm3
1 ` etc. “ 0,

δm1
2 ` δm2

2 ` δm3
2 ` etc. “ 0,

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

δm1
n ` δm2

n ` δm3
n ` etc. “ 0.

,

/

/

/

/

/

.

/

/

/

/

/

-

(18)

For this it is evidently necessary and sufficient that

t1 “ t2 “ t3 “ etc. (19)

p1 “ p2 “ p3 “ etc. (20)

µ1
1 “ µ2

1 “ µ3
1 “ etc.

µ1
2 “ µ2

2 “ µ3
2 “ etc.

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

µ1
n “ µ2

n “ µ3
n “ etc.

,

/

/

/

.

/

/

/

-

(21)

Equations (19) and (20) express the conditions of thermal and mechani-
cal equilibrium, viz. that the temperature and the pressure must be constant
throughout the whole mass. In equations (21) we have the conditions charac-
teristic of chemical equilibrium. If we call a quantity µ2, as defined by such an
equation as (12), the potential for the substance Sx in the homogeneous mass
considered, these conditions may be expressed as follows:—

The potential for each component substance must be constant throughout the
whole mass.

It will be remembered that we have supposed that there is no restriction
upon the freedom of motion or combination of the component substances, and
that each is an actual component of all parts of the given mass.

The state of the whole mass will be completely determined (if we regard as
immaterial the position and form of the various homogeneous parts of which
it is composed), when the values are determined of the quantities of which
the variations occur in (15). The number of these quantities, which we may
call the independent variables, is evidently pn ` 2qν, ν denoting the number
of homogeneous parts into which the whole mass is divided. All the quantities
which occur in (19), (20), (21), are functions of these variables, and may
be regarded as known functions, if the energy of each part is known as a
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function of its entropy, volume, and the quantities of its components. (See eq.
(12).) Therefore, equations (19), (20), (21), may be regarded as pν ´ 1qpn` 2q

independent equations between the independent variables. The volume of the
whole mass and the total quantities of the various substances being known
afford n ` 1 additional equations. If we also know the total energy of the
given mass, or its total entropy, we will have as many equations as there are
independent variables.

But if any of the substances S1, S2, . . . Sn are only possible components of
some parts of the given mass, the variation δm of the quantity of such a sub-
stance in such a part cannot have a negative value, so that the general condition
of equilibrium (15) does not require that the potential for that substance in
that part should be equal to the potential for the same substance in the parts
of which it is an actual component, but only that it shall not be less. In this
case instead of (21) we may write

µ1 “ M1

for all parts of which S1 is an actual component, and
µ1 ŕ M1

for all parts of which S1 is a possible (but not actual) component.
µ2 “ M2

for all parts of which S2 is an actual component, and
µ2 ŕ H2

for all parts of which S2 is a possible (but not actual) component,
etc.,

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

(22)

M1,M2, etc., denoting constants of which the value is only determined by
these equations.

If we now suppose that the components (actual or possible) of the various
homogeneous parts of the given mass are not the same, the result will be of
the same character as before, provided that all the different components are
independent (i.e., that no one can be made out of the others), so that the total
quantity of each component is fixed. The general condition of equilibrium
(15) and the equations of condition (16), (17), (18) will require no change,
except that, if any of the substances S1, S2, . . . Sn is not a component (actual
or possible) of any part, the term µδm for that substance and part will be
wanting in the former, and the δm in the latter. This will require no change in
the form of the particular conditions of equilibrium as expressed by (19), (20),
(22); but the number of single conditions contained in (22) is of course less than
if all the component substances were components of all the parts. Whenever,
therefore, each of the different homogeneous parts of the given mass may be
regarded as composed of some or of all of the same set of substances, no one of
which can be formed out of the others, the condition which (with equality of
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temperature and pressure) is necessary and sufficient for equilibrium between
the different parts of the given mass may be expressed as follows:—

The potential for each of the component substances must have a constant
value in all parts of the given mass of which that substance is an actual com-
ponent, and have a value not less than this in all parts of which it is a possible
component.

The number of equations afforded by these conditions, after elimination of
M1,M2, . . .Mn, will be less than pn ` 2qpν ´ 1q by the number of terms in
(15) in which the variation of the form δm is either necessarily nothing or
incapable of a negative value. The number of variables to be determined is
diminished by the same number, or, if we choose, we may write an equation of
the form m “ 0 for each of these terms. But when the substance is a possible
component of the part concerned, there will also be a condition (expressed
by ŕ ) to show whether the supposition that the substance is not an actual
component is consistent with equilibrium.

We will now suppose that the substances S1, S2, . . . Sn are not all indepen-
dent of each other, i.e., that some of them can be formed out of others. We will
first consider a very simple case. Let S3 be composed of S1 and S2 combined
in the ratio of a to b, S1 and S2 occurring as actual components in some parts
of the given mass, and S3 in other parts, which do not contain S1 and S2 as
separately variable components. The general condition of equilibrium will still
have the form of (15) with certain of the terms of the form µδm omitted. It
may be written more briefly

ÿ

ptδηq ´
ÿ

ppδvq `
ÿ

pµ1δm1q `
ÿ

pµ2δm2q . . . `
ÿ

pµnδmnq ŕ 0. (23)

the sign
ř

denoting summation in regard to the different parts of the given
mass. But instead of the three equations of condition,

ÿ

δm1 “ 0,
ÿ

δm2 “ 0,
ÿ

δm3 “ 0, (24)

we shall have the two,
ÿ

δm1 `
a

a ` b

ÿ

δm3 “ 0,

ÿ

δm2 `
b

a ` b

ÿ

δm3 “ 0.

,

/

.

/

-

(25)

The other equations of condition,
ÿ

δη “ 0,
ÿ

δv “ 0,
ÿ

δmi “ 0, etc., (26)

will remain unchanged. Now as all values of the variations which satisfy equa-
tions (24) will also satisfy equations (25), it is evident that all the particular
conditions of equilibrium which we have already deduced, (19), (20), (22), are
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necessary in this case also. When these are satisfied, the general condition
(23) reduces to

M1

ÿ

δm1 ` M2

ÿ

δm2 ` M3

ÿ

δm3 ŕ 0. (27)

For, although it may be that µ1
1, for example, is greater than M1, yet it can

only be so when the following δm1
1 is incapable of a negative value. Hence, if

(27) is satisfied, (23) must also be. Again, if (23) is satisfied, (27) must also
be satisfied, so long as the variation of the quantity of every substance has the
value 0 in all the parts of which it is not an actual component. But as this
limitation does not affect the range of the possible values of

ř

δm1,
ř

δm2,
and

ř

δm3, it may be disregarded. Therefore the conditions (23) and (27) are
entirely equivalent, when (19), (20), (22) are satisfied. Now, by means of the
equations of condition (25), we may eliminate

ř

δm1 and
ř

δm2 from (27),
which becomes

´aM1

ÿ

δm3 ´ bM2

ÿ

δm3 ` pa ` bqM3

ÿ

δm3 ŕ 0, (28)

i.e., as the value of
ř

δm3 may be either positive or negative,

aM1 ` bM2 “ pa ` bqM3, (29)

which is the additional condition of equilibrium which is necessary in this case.
The relations between the component substances may be less simple than in

this case, but in any case they will only affect the equations of condition, and
these may always be found without difficulty, and will enable us to eliminate
from the general condition of equilibrium as many variations as there are equa-
tions of condition, after which the coefficients of the remaining variations may
be set equal to zero, except the coefficients of variations which are incapable
of negative values, which coefficients must be equal to or greater than zero. It
will be easy to perform these operations in each particular case, but it may be
interesting to see the form of the resultant equations in general.

We will suppose that the various homogeneous parts are considered as hav-
ing in all n components, S1, S2 . . . Sn, and that there is no restriction upon
their freedom of motion and combination. But we will so far limit the gener-
ality of the problem as to suppose that each of these components is an actual
component of some part of the given mass.∗ If some of these components can
be formed out of others, all such relations can be expressed by equations such
as

αSα ` βSb ` etc. “ κSk ` λSl ` etc. (30)
where Sa,Sb,Sk, etc. denote the units of the substances Sa, Sb, Sk, etc., (that
is, of certain of the substances S1, S2, . . . Sn ) and a, β, κ, etc. denote numbers.

∗ When we come to seek the conditions of equilibrium relating to the formation of masses unlike any
previously existing, we shall take up de novo the whole problem of the equilibrium of heterogeneous masses
enclosed in a non-conducting envelop, and give it a more general treatment, which will be free from this
limitation.
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These are not, it will be observed, equations between abstract quantities, but
the sign = denotes qualitative as well as quantitative equivalence. We will sup-
pose that there are r independent equations of this character. The equations
of condition relating to the component substances may easily be derived from
these equations, but it will not be necessary to consider them particularly. It is
evident that they will be satisfied by any values of the variations which satisfy
equations (18); hence, the particular conditions of equilibrium (19), (20), (22)
must be necessary in this case, and, if these are satisfied, the general equation
of equilibrium (15) or (23) will reduce to

M1

ÿ

δm1 ` M2

ÿ

δm2 . . . ` Mn

ÿ

δmn ŕ 0. (31)

This will appear from the same considerations which were used in regard to
equations (23) and (27). Now it is evidently possible to give to

ř

δma,
ř

δmb,
ř

δmk etc. values proportional to α, β,´κ, etc. in equation (30), and also the
same values taken negatively, making

ř

δm “ 0 in each of the other terms;
therefore

αMa ` βMb ` etc. . . . ´ κMk ´ λMl ´ etc. “ 0, (32)
or,

αMa ` βMb ` etc. “ κMk ` λMl ` etc. (33)
It will be observed that this equation has the same form and coefficients as
equation (30), M taking the place of S. It is evident that there must be a
similar condition of equilibrium for every one of the r equations of which (30)
is an example, which may be obtained simply by changing S in these equations
into M . When these conditions are satisfied, (31) will be satisfied with any
possible values of

ř

δm1,
ř

δm2, . . .
ř

δmn. For no values of these quantities
are possible, except such that the equation

´

ÿ

δm1

¯

S1 `

´

ÿ

δm2

¯

S2 . . . `

´

ÿ

δmn

¯

Sn “ 0, (34)

after the substitution of these values, can be derived from the r equations like
(30), by the ordinary processes of the reduction of linear equations. Therefore,
on account of the correspondence between (31) and (34), and between the r
equations like (33) and the r equations like (30), the conditions obtained by
giving any possible values to the variations in (31) may also be derived from the
r equations like (33); that is, the condition (31) is satisfied if the r equations
like (33) are satisfied. Therefore the r equations like (33) are with (19), (20),
and (22) the equivalent of the general condition (15) or (23).

For determining the state of a given mass when in equilibrium and having a
given volume and given energy or entropy, the condition of equilibrium affords
an additional equation corresponding to each of the r independent relations
between the n component substances. But the equations which express our
knowledge of the matter in the given mass will be correspondingly diminished,
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being n ´ r in number, like the equations of condition relating to the quanti-
ties of the component substances, which may be derived from the former by
differentiation.

Conditions relating to the possible Formation of Masses
Unlike any Previously Existing.

The variations which we have hitherto considered do not embrace every possi-
ble infinitesimal variation in the state of the given mass, so that the particular
conditions already formed, although always necessary for equilibrium (when
there are no other equations of condition than such as we have supposed),
are not always sufficient. For, besides the infinitesimal variations in the state
and composition of different parts of the given mass, infinitesimal masses may
be formed entirely different in state and composition from any initially exist-
ing. Such parts of the whole mass in its varied state as cannot be regarded
as parts of the initially existing mass which have been infinitesimally varied
in state and composition, we will call new parts. These will necessarily be
infinitely small. As it is more convenient to regard a vacuum as a limiting
case of extreme rarefaction than to give a special consideration to the possi-
ble formation of empty spaces within the given mass, the term new parts will
be used to include any empty spaces which may be formed, when such have
not existed initially. We will use Dε,Dη,Dv, Dm1,Dm2, . . .Dmn to denote
the infinitesimal energy, entropy, and volume of any one of these new parts,
and the infinitesimal quantities of its components. The component substances
S1, S2 . . . Sn must now be taken to include not only the independently variable
components (actual or possible) of all parts of the given mass as initially ex-
isting, but also the components of all the new parts, the possible formation of
which we have to consider. The character δ will be used as before to express
the infinitesimal variations of the quantities relating to those parts which are
only infinitesimally varied in state and composition, and which for distinction
we will call original parts, including under this term the empty spaces, if such
exist initially, within the envelop bounding the system. As we may divide
the given mass into as many parts as we choose, and as not only the initial
boundaries, but also the movements of these boundaries during any variation
in the state of the system are arbitrary, we may so define the parts which we
have called original, that we may consider them as initially homogeneous and
remaining so, and as initially constituting the whole system.

The most general value of the variation of the energy of the whole system
is evidently

ÿ

δε `
ÿ

Dε, (35)

the first summation relating to all the original parts, and the second to all
the new parts. (Throughout the discussion of this problem, the letter δ or
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D following
ř

will sufficiently indicate whether the summation relates to the
original or to the new parts.) Therefore the general condition of equilibrium
is

ÿ

δε `
ÿ

Dε ŕ 0, (36)

or, if we substitute the value of δε taken from equation (12),
ÿ

Dε `
ÿ

ptδηq ´
ÿ

ppδvq `
ÿ

pµ1δm1q `
ÿ

pµ2δm2q . . . `
ÿ

pµnδmnq ŕ 0.

(37)
If any of the substances S1, S2, . . . Sn can be formed out of others, we will
suppose, as before (see page 15), that such relations are expressed by equations
between the units of the different substances. Let these be

a1S1 ` a2S2 . . . ` anSn “ 0

b1S1 ` b2S2 . . . ` bnSn “ 0

etc.

,

/

.

/

-

r equations. (38)

The equations of condition will be (if there is no restriction upon the freedom
of motion and composition of the components)

ÿ

δη `
ÿ

Dη “ 0, (39)

ÿ

δv `
ÿ

Dv “ 0, (40)

and n ´ r equations of the form

h1

´

ÿ

δm1 `
ÿ

Dm1

¯

` h2

´

ÿ

δm2 `
ÿ

Dm2

¯

. . .

` hn

´

ÿ

δmn `
ÿ

Dmn

¯

“ 0

i1

´

ÿ

δm1 `
ÿ

Dm1

¯

` i2

´

ÿ

δm2 `
ÿ

Dm2

¯

. . .

` in

´

ÿ

δmn `
ÿ

Dmn

¯

“ 0

etc.

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

∗ (41)

Now, using Lagrange’s “method of multipliers,” † we will subtract T p
ř

δη `
ř

Dηq ´ P p
ř

δv `
ř

Dvq from the first member of the general condition of
equilibrium (37), T and P being constants of which the value is as yet ar-
bitrary. We might proceed in the same way with the remaining equations of

∗ In regard to the relation between the coefficients in (41) and those in (38), the reader will easily convince
himself that the coefficients of any one of equations (41) are such is would satisfy all the equations (38) if
substituted for S1, S2 . . . Sn; and that this is the only condition which these coefficients must satisfy, except
that the n ´ r sets of coefficients shall be independent, i.e, shall be such as to form independent equations;
and that this relation between the coefficients of the two sets of equations is a reciprocal one.

† On account of the sign ŕ in (37), and because some of the variations are incapable of negative values,
the successive steps in the reasoning will be developed at greater length than would be otherwise necessary.
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condition, but we may obtain the same result more simply in another way. We
will first observe that

´

ÿ

δm1 `
ÿ

Dm1

¯

S1 `

´

ÿ

δm2 `
ÿ

Dm2

¯

S2 . . .

`

´

ÿ

δmn `
ÿ

Dmn

¯

Sn “ 0,
(42)

which equation would hold identically for any possible values of the quantities
in the parentheses, if for r of the letters S1,S2, . . .Sn were substituted their
values in terms of the others as derived from equations (38). (Although S1,
S2 . . .Sn do not represent abstract quantities, yet the operations necessary for
the reduction of linear equations are evidently applicable to equations (38).)
Therefore, equation (42) will hold true if for S1,S2, . . .Sn we substitute n
numbers which satisfy equations (38). Let M1,M2, . . .Mn be such numbers,
i.e., let

a1M1 ` a2M2 . . . ` anMn “ 0,

b1M1 ` b2M2 . . . ` bnMn “ 0

etc.

,

/

.

/

-

r equations, (43)

then
M1

´

ÿ

δm1 `
ÿ

Dm1

¯

` M2

´

ÿ

δm2 `
ÿ

Dm2

¯

. . .

` Mn

´

ÿ

δmn `
ÿ

Dmn

¯

“ 0.
(44)

This expression, in which the values of n ´ r of the constants M1, M2 . . .Mn

are still arbitrary, we will also subtract from the first member of the general
condition of equilibrium (37), which will then become

ÿ

Dε `
ÿ

ptδηq ´
ÿ

ppδvq `
ÿ

pµ1δm1q . . . `
ÿ

pµnδmnq

´ T
ÿ

δη ` P
ÿ

δv ´ M1

ÿ

δm1 . . . ´ Mn

ÿ

δmn

´ T
ÿ

Dη ` P
ÿ

Dv ´ M1

ÿ

Dm1 . . . ´ Mn

ÿ

Dmn ŕ 0.

(45)

That is, having assigned to T, P,M1,M2, . . .Mn any values consistent with
(43), we may assert that it is necessary and sufficient for equilibrium that (45)
shall hold true for any variations in the state of the system consistent with
the equations of condition (39), (40), (41). But it will always be possible,
in case of equilibrium, to assign such values to T, P,M1,M2 . . .Mn, without
violating equations (43), that (45) shall hold true for all variations in the state
of the system and in the quantities of the various substances composing it,
even though these variations are not consistent with the equations of condition
(39), (40), (41). For, when it is not possible to do this, it must be possible
by applying (45) to variations in the system not necessarily restricted by the
equations of condition (39), (40), (41) to obtain conditions in regard to T, P,
M1,M2 . . .Mn, some of which will be inconsistent with others or with equations
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(43). These conditions we will represent by

A ŕ 0, B ŕ 0, etc. , (46)

A,B, etc. being linear functions of T, P,M1,M2, . . .Mn. Then it will be pos-
sible to deduce from these conditions a single condition of the form

αA ` βB ` etc. ŕ 0, (47)

α, β, etc. being positive constants, which cannot hold true consistently with
equations (43). But it is evident from the form of (47) that, like any of the
conditions (46), it could have been obtained directly from (45) by applying
this formula to a certain change in the system (perhaps not restricted by
the equations of condition (39), (40), (41)). Now as (47) cannot hold true
consistently with eqs. (43), it is evident, in the first place, that it cannot
contain T or P , therefore in the change in the system just mentioned (for
which (45) reduces to (47))

ÿ

δη `
ÿ

Dη “ 0, and
ÿ

δv `
ÿ

Dv “ 0,

so that the equations of condition (39) and (40) are satisfied. Again, for the
same reason, the homogeneous function of the first degree of M1,M2, . . .Mn

in (47) must be one of which the value is fixed by eqs. (43). But the value
thus fixed can only be zero, as is evident from the form of these equations.
Therefore

´

ÿ

δm1 `
ÿ

Dm1

¯

M1 `

´

ÿ

δm2 `
ÿ

Dm2

¯

M2 . . .

`

´

ÿ

δmn `
ÿ

Dmn

¯

Mn “ 0
(48)

for any values of M1,M2, . . .Mn which satisfy eqs. (43), and therefore
´

ÿ

δm1 `
ÿ

Dm1

¯

S1 `

´

ÿ

δm2 `
ÿ

Dm2

¯

S2 . . .

`

´

ÿ

δmn `
ÿ

Dmn

¯

Sn “ 0
(49)

for any numerical values of S1,S2 . . .Sn which satisfy eqs. (38). This equation
(49) will therefore hold true, if for r of the letters S1,S2 . . .Sn we substitute
their values in terms of the others taken from eqs. ( 38 ), and therefore it
will hold true when we use S1, S2, . . .Sn, as before, to denote the units of
the various components. Thus understood, the equation expresses that the
values of the quantities in the parentheses are such as are consistent with the
equations of condition (41). The change in the system, therefore, which we
are considering, is not one which violates any of the equations of condition,
and as (45) does not hold true for this change, and for all values of T, P,M1,
M2, . . .Mn which are consistent with eqs. (43), the state of the system cannot
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be one of equilibrium. Therefore it is necesssry, and it is evidently sufficient
for equilibrium, that it shall be possible to assign to T, P,M1,M2, . . .Mn such
values, consistent with eqs. (43), that the condition (45) shall hold true for
any change in the system irrespective of the equations of condition (39), (40),
(41).

For this it is necessary and sufficient that

t “ T, p “ P, (50)

µ1δm1 ŕ M1δm1, µ2δm2 ŕ M2δm2, . . . µnδmn ŕ Mnδmn (51)
for each of the original parts as previously defined, and that

Dε ´ TDη ` PDv ´ M1Dm1 ´ M2Dm2 . . . ´ MnDmn ŕ 0, (52)

for each of the new parts as previously defined. If to these conditions we add
equations (43), we may treat T, P,M1,M2 . . .Mn simply as unknown quantities
to be eliminated.

In regard to conditions (51), it will be observed that if a substance S1, is
an actual component of the part of the given mass distinguished by a single
accent, δm1

1 may be either positive or negative, and we shall have µ1
1 “ M1;

but if S1 is only a passible component of that part, δm1
1 will be incapable of a

negative value, and we will have µ1
1 ŕ M1

The formula (50), (51), and (43) express the same particular conditions
of equilibrium which we have before obtained by a less general process. It
remains to discuss (52). This formula must hold true of any infinitesimal mass
in the system in its varied state which is not approximately homogeneous with
any of the surrounding masses, the expressions Dε,Dη,Dv,Dm1,Dm2, . . .Dmn

denoting the energy, entropy, and volume of this infinitesimal mass, and the
quantities of the substances S1, S2, . . . Sn which we regard as composing it (not
necessarily as independently variable components). If there is more than one
way in which this mass may be considered as composed of these substances,
we may choose whichever is most convenient. Indeed it follows directly from
the relations existing between M1,M2, . . . and Mn that the result would be the
same in any case. Now, if we assume that the values of Dε,Dη,Dv,Dm1,Dm2,
. . .Dmn are proportional to the values of ε, η, v,m1,m2, . . .mn for any large
homogeneous mass of similar composition, and of the same temperature and
pressure, the condition is equivalent to this, that

ε ´ Tη ` Pv ´ M1m1 ´ M2m2 . . . ´ Mnmn ŕ 0 (53)

for any large homogeneous body which can be formed out of the substances
S1, S2, . . . Sn

But the validity of this last transformation cannot be admitted without
considerable limitation. It is assumed that the relation between the energy,
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entropy, volume, and the quantities of the different components of a very small
mass surrounded by substances of different composition and state is the same
as if the mass in question formed a part of a large homogeneous body. We
started, indeed, with the assumption that we might neglect the part of the
energy, etc., depending upon the surfaces separating heterogeneous masses.
Now, in many cases, and for many purposes, as, in general, when the masses
are large, such an assumption is quite legitimate, but in the case of these masses
which are formed within or among substances of different nature or state, and
which at their first formation must be infinitely small, the same assumption is
evidently entirely inadmissible, as the surfaces must be regarded as infinitely
large in proportion to the masses. We shall see hereafter what modifications
are necessary in our formula in order to include the parts of the energy, etc.,
which are due to the surfaces, but this will be on the assumption, which is
usual in the theory of capillarity, that the radius of curvature of the surfaces
is large in proportion to the radius of sensible molecular action, and also to
the thickness of the lamina of matter at the surface which is not (sensibly)
homogeneous in all respects with either of the masses which it separates. But
although the formula thus modified will apply with sensible accuracy to masses
(occurring within masses of a different nature) much smaller than if the terms
relating to the surfaces were omitted, yet their failure when applied to masses
infinitely small in all their dimensions is not less absolute.

Considerations like the foregoing might render doubtful the validity even of
(52) as the necessary and sufficient condition of equilibrium in regard to the
formation of masses not approximately homogeneous with those previously
existing, when the conditions of equilibrium between the latter are satisfied,
unless it is shown that in establishing this formula there have been no quantities
neglected relating to the mutual action of the new and the original parts, which
can affect the result. It will be easy to give such a meaning to the expressions
Dε,Dη,Dv,Dm1,Dm2, . . .Dmn that this shall be evidently the case. It will be
observed that the quantities represented by these expressions have not been
perfectly defined. In the first place, we have no right to assume the existence of
any surface of absolute discontinuity to divide the new parts from the original,
so that the position given to the dividing surface is to a certain extent arbitrary.
Even if the surface separating the masses were determined, the energy to be
attributed to the masses separated would be partly arbitrary, since a part
of the total energy depends upon the mutual action of the two masses. We
ought perhaps to consider the case the same in regard to the entropy, although
the entropy of a system never depends upon the mutual relations of parts at
sensible distances from one another. Now the condition (52) will be valid
if the quantities Dε,Dη,Dv,Dm1,Dm2, . . .Dmn are so defined that none of
the assumptions which have been made, tacitly or otherwise, relating to the
formation of these new parts, shall be violated. These assumptions are the
following:— that the relation between the variations of the energy, entropy,
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volume, etc., of any of the original parts is not affected by the vicinity of
the new parts; and that the energy, entropy, volume, etc., of the system in its
varied state are correctly represented by the sums of the energies, entropies,
volumes, etc., of the various parts (original and new), so far at least as any of
these quantities are determined or affected by the formation of the new parts.
We will suppose Dε,Dη,Dv,Dm1,Dm2 . . .Dmn to be so defined that these
conditions shall not be violated. This may be done in various ways. We may
suppose that the position of the surfaces separating the new and the original
parts has been fixed in any suitable way. This will determine the space and the
matter belonging to the parts separated. If this does not determine the division
of the entropy, we may suppose this determined in any suitable arbitrary way.
Thus we may suppose the total energy in and about any new part to be so
distributed that equation (12) as applied to the original parts shall not be
violated by the formation of the new parts. Or, it may seem more simple
to suppose that the imaginary surface which divides any new part from the
original is so placed as to include all the matter which is affected by the vicinity
of the new formation, so that the part or parts which we regard as original
may be left homogeneous in the strictest sense, including uniform densities of
energy and entropy, up to the very bounding surface. The homogeneity of the
new parts is of no consequence, as we have made no assumption in that respect.
It may be doubtful whether we can consider the new parts, as thus bounded,
to be infinitely small even in their earliest stages of development. But if they
are not infinitely small, the only way in which this can affect the validity of
our formula will be that in virtue of the equations of condition, i.e., in virtue
of the evident necessities of the case, finite variations of the energy, entropy,
volume, etc., of the original parts will be caused, to which it might seem that
equation (12) would not apply. But if the nature and state of the mass be not
varied, equation (12) will hold true of finite differences. (This appears at once,
if we integrate the equation under the above limitation.) Hence, the equation
will hold true for finite differences, provided that the nature and state of the
mass be infinitely little varied. For the differences may be considered as made
up of two parts, of which the first are for a constant nature and state of the
mass, and the second are infinitely small. We may therefore regard the new
parts to be bounded as supposed without prejudice to the validity of any of
our results.

The condition (52) understood in either of these ways (or in others which
will suggest themselves to the reader) will have a perfectly definite meaning,
and will be valid as the necessary and sufficient condition of equilibrium in
regard to the formation of new parts, when the conditions of equilibrium in
regard to the original parts, (50), (51), and (43), are satisfied.

In regard to the condition (53), it may be shown that with (50), (51), and
(43) it is always sufficient for equilibrium. To prove this, it is only necessary
to show that when (50), (51), and (43) are satisfied, and (52) is not, (53) will
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also not be satisfied.
We will first observe that an expression of the form

´ε ` Tη ´ Pv ` M1m1 ` M2m2 . . . ` Mnmn (54)

denotes the work obtainable by the formation (by a reversible process) of a
body of which ε, η, v,m1,m2, . . .mn are the energy, entropy, volume, and the
quantities of the components, within a medium having the pressure P , the
temperature T , and the potentials M1,M2 . . .Mn. (The medium is supposed
so large that its properties are not sensibly altered in any part by the formation
of the body.) For ε is the energy of the body formed, and the remaining
terms represent (as may be seen by applying equation (12) to the medium)
the decrease of the energy of the medium, if, after the formation of the body,
the joint entropy of the medium and the body, their joint volumes and joint
quantities of matter, were the same as the entropy, etc., of the medium before
the formation of the body. This consideration may convince us that for any
given finite values of u and of T, P,M1, etc., this expression cannot be infinite
when ε, η,m1, etc. are determined by any real body, whether homogeneous
or not (but of the given volume), even when T, P,M1, etc., do not represent
the values of the temperature, pressure, and potentials of any real substance.
(If the substances S1, S2 . . . Sn are all actual components of any homogeneous
part of the system of which the equilibrium is discussed, that part will afford
an example of a body having the temperature, pressure, and potentials of the
medium supposed.)

Now by integrating equation (12) on the supposition that the nature and
state of the mass considered remain unchanged, we obtain the equation

ε “ tη ´ pv ` µ1m1 ` µ2m2 . . . ` µnmn (55)

which will hold true of any homogeneous mass whatever. Therefore for any
one of the original parts, by (50) and (51),

ε ´ Tη ` Pv ´ M1m1 ´ M2m2 . . . ´ Mnmn “ 0. (56)

If the condition (52) is not satisfied in regard to all possible new parts, let N
be a new part occurring in an original part O, for which the condition is not
satisfied. It is evident that the value of the expression

ε ´ Tη ` Pv ´ M1m1 ´ M2m2 . . . ´ Mnmn (57)

applied to a mass like O including some very small masses like N , will be
negative, and will decrease if the number of these masses like N is increased,
until there remains within the whole mass no portion of any sensible size
without these masses like N , which, it will be remembered, have no sensible
size. But it cannot decrease without limit, as the value of (54) cannot become
infinite. Now we need not inquire whether the least value of (57) (for constant
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values of T, P,M1,M2, . . .Mn) would be obtained by excluding entirely the
mass like N , and filling the whole space considered with masses like N , or
whether a certain mixture would give a smaller value, —it is certain that the
least possible value of (57) per unit of volume, and that a negative value, will
be realized by a mass having a certain homogeneity. If the new part N for
which the condition (52) is not satisfied occurs between two different original
parts O1 and O2, the argument need not be essentially varied. We may consider
the value of (57) for a body consisting of masses like O1 and O2 separated by
a lamina N . This value may be decreased by increasing the extent of this
lamina, which may be done within a given volume by giving it a convoluted
form: and it will be evident, as before, that the least possible value of (57) will
be for a homogeneous mass, and that the value will be negative. And such a
mass will be not merely an ideal combination, but a body capable of existing,
for as the expression (57) has for this mass in the state considered its least.
possible value per unit of volume, the energy of the mass included in a unit
of volume is the least possible for the same matter with the same entropy and
volume, —hence, if confined in a non-conducting vessel, it will be in a state
of not unstable equilibrium. Therefore when (50), (51), and (43) are satisfied,
if the condition (52) is not satisfied in regard to all possible new parts, there
will be some homogeneous body which can be formed out of the substances
S1, S2, . . . Sn which will not satisfy condition (53).

Therefore, if the initially existing masses satisfy the conditions (50), (51),
and (43), and condition (53) is satisfied by every homogeneous body which
can be formed out of the given matter, there will be equilibrium.

On the other hand, (53) is not a necessary condition of equilibrium. For
we may easily conceive that the condition (52) shall hold true (for any very
small formations within or between any of the given masses), while the con-
dition (53) is not satisfied (for all large masses formed of the given matter),
and experience shows that this is very often the case. Supersaturated so-
lutions, superheated water, etc., are familiar examples. Such an equilibrium
will, however, be practically unstable. By this is meant that, although, strictly
speaking, an infinitely small disturbance or change may not be sufficient to de-
stroy the equilibrium, yet a very small change in the initial state, perhaps a
circumstance which entirely escapes our powers of perception, will be suffi-
cient to do so. The presence of a small portion of the substance for which the
condition (53) does not hold true, is sufficient to produce this result, when this
substance forms a variable component of the original homogeneous masses. In
other cases, when, if the new substances are formed at all, different kinds must
be formed simultaneously, the initial presence of the different kinds, and that
in immediate proximity, may be necessary.

It will be observed, that from (56) and (53) we can at once obtain (50) and
(51), viz. by applying (53) to bodies differing infinitely little from the various
homogeneous parts of the given mass. Therefore, the condition (56) (relating
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to the various homogeneous parts of the given mass) and (53) (relating to
any bodies which can be formed of the given matter) with (43) are always
sufficient for equilibrium, and always necessary for an equilibrium which shall
be practically stable. And, if we choose, we may get rid of limitation in regard
to equations (43). For, if we compare these equations with (38), it is easy to
see that it is always immaterial, in applying the tests (56) and (53) to any
body, how we consider it to be composed. Hence, in applying these tests, we
may consider all bodies to be composed of the ultimate components of the
given mass. Then the terms in (56) and (53) which relate to other components
than these will vanish, and we need not regard the equations (43). Such of
the constants M1,M2, . . .Mn as relate to the ultimate components, may be
regarded, like T and P , as unknown quantities subject only to the conditions
(56) and (53).

These two conditions, which are sufficient for equilibrium and necessary
for a practically stable equilibrium, may be united in one, viz. (if we choose
the ultimate components of the given mass for the component substances to
which m1,m2, . . .mn relate), that it shall be possible to give such values to
the constants T, P,M1,M2, . . .Mn in the expression (57) that the value of the
expression for each of the homogeneous parts of the mass in question shall be
as small as for any body whatever made of the same components.

Effect of Solidity of any Part of the given Mass.

If any of the homogeneous masses of which the equilibrium is in question are
solid, it will evidently be proper to treat the proportion of their components
as invariable in the application of the criterion of equilibrium, even in the case
of compounds of variable proportions, i.e., even when bodies can exist which
are compounded in proportions infinitesimally varied from those of the solids
considered. (Those solids which are capable of absorbing fluids form of course
an exception. so far as their fluid components are concerned.) It is true that
a solid may be increased by the formation of new solid matter on the surface
where it meets a fluid, which is not homogeneous with the previously existing
solid, but such a deposit will properly be treated as a distinct part of the
system (viz., as one of the parts which we have called new). Yet it is worthy of
notice that if a homogeneous solid which is a compound of variable proportions
is in contact and equilibrium with a fluid, and the actual components of the
solid (considered as of variable composition) are also actual components of the
fluid, and the condition (53) is satisfied in regard to all bodies which can be
formed out of the actual components of the fluid (which will always be the
case unless the fluid is practically unstable), all the conditions will hold true
of the solid, which would be necessary for equilibrium if it were fluid.

This follows directly from the principles stated on the preceding pages. For
in this case the value of (57) will be zero as determined either for the solid
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or for the fluid considered with reference to their ultimate components, and
will not be negative for any body whatever which can be formed of these
components; and these conditions are sufficient for equilibrium independently
of the solidity of one of the masses. Yet the point is perhaps of sufficient
importance to demand a more detailed consideration.

Let Sa, . . . Sq be the actual components of the solid, and Sh, . . . Sk its possi-
ble components (which occur as actual components in the fluid); then, consid-
ering the proportion of the components of the solid as variable, we shall have
for this body by equation (12)

dε1 “ tdη1 ´ p1dv1 ` µ1
adm

1
a ¨ ¨ ¨ ` µ1

gdm
1
g

`µ1
hdm

1
h . . . ` µ1

kdm
1
k.

(58)

By this equation the potentials µ1
a, . . . µ

1
k are perfectly defined. But the differ-

entials dm1
a, . . . dm

1
k, considered as independent, evidently express variations

which are not possible in the sense required in the criterion of equilibrium. We
might, however, introduce them into the general condition of equilibrium, if
we should express the dependence between them by the proper equations of
condition. But it will be more in accordance with our method hitherto, if we
consider the solid to have only a single independently variable component Sx,
of which the nature is represented by the solid itself. We may then write

δε1 “ t1δη1 ´ p1δv1 ` µ1
xδm

1
x. (59)

In regard to the relation of the potential µ1
x to the potentials occurring in

equation (58) it will be observed, that as we have by integration of (58) and
(59) and

ε1 “ t1η1 ´ p1v1 ` µ1
am

1
a . . . ` µ1

gm
1
g, (60)

and
ε1 “ t1η1 ´ p1v1 ` µ1

xm
1
x; (61)

therefore
µ1
xm

1
x “ µ1

am
1
a . . . ` µ1

gm
1
g. (62)

Now, if the fluid has besides Sa, . . . Sg and Sh, . . . Sk the actual components
Sl, . . . Sn, we may write for the fluid

δε2 “ t2δη2 ´ p2δv2 ` µ2
aδm

2
a . . . ` µ2

gδm
2
g

` µ2
hδm

2
h . . . ` µ2

kδm
2
k ` µ2

l δm
2
l . . . ` µ2

nδm
2
n,

(63)

and as by supposition

m1
xSx “ m1

aSa . . . ` m1
gSg (64)

equations (43), (50), and (51) will give in this case on elimination of the con-
stants T, P , etc.,

t1 “ t2, p1 “ p2, (65)
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and
m1
xµ

1
x “ m1

aµ
2
a . . . ` m1

gµ
2
g. (66)

Equations (65) and (66) may be regarded as expressing the conditions of equi-
librium between the solid and the fluid. The last condition may also, in virtue
of (62), be expressed by the equation

m1
aµ

1
a . . . ` m1

gµ
1
g “ m1

aµ
2
a . . . ` m1

gµ
2
g. (67)

But if condition (53) holds true of all bodies which can be formed of Sa,
. . . Sg, Sh, . . . Sk, Sl . . . Sn, we may write for all such bodies

ε ´ t2η ` p2v ´ µ2
ama . . . ´ µ2

gmg ´ µ2
hmh

. . . ´ µ2
kmk ´ µ2

lml . . . ´ µ2
nmn ŕ 0.

(68)

(In applying this formula to various bodies, it is to be observed that only the
values of the unaccented letters are to be determined by the different bodies to
which it is applied, the values of the accented letters being already determined
by the given fluid.) Now, by (60), (65), and (67), the value of the first member
of this condition is zero when applied to the solid in its given state. As the
condition must hold true of a body differing infinitesimally from the solid, we
shall hare

dε1 ´ t2dη1 ` p2dv1 ´ µ2
adm

1
a . . . ´ µ2

gdm
1
g

´ µ2
hdm

1
h . . . ´ µ2

kdm
1
k ŕ 0,

(69)

or, by equations (58) and (65),

pµ1
a ´ µ2

aq dm
1
a . . . `

`

µ1
g ´ µ2

g

˘

dm1
g

` pµ1
h ´ µ2

hq dm1
h . . . ` pµ1

k ´ µ2
kq dm1

k ŕ 0. (70)

Therefore, as these differentials are all independent,

µ1
a “ µ2

a, . . . µ
1
g “ µ1

g, µ1
h ŕ µh

2, . . . µ1
k ŕ µ2

k; (71)

which with (65) are evidently the same conditions which we would have ob-
tained if we had neglected the fact of the solidity of one of the masses.

We have supposed the solid to be homogeneous. But it is evident that in any
case the above conditions must hold for every separate point where the solid
meets the fluid. Hence, the temperature and pressure and the potentials for all
the actual components of the solid must have a constant value in the solid at the
surface where it meets the fluid. Now, these quantities are determined by the
nature and state of the solid, and exceed in number the independent variations
of which its nature and state are capable. Hence, if we reject as improbable
the supposition that the nature or state of a body can vary without affecting
the value of any of these quantities, we may conclude that a solid which varies
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(continuously) in nature or state at its surface cannot be in equilibrium with a
stable fluid which contains, as independently variable components, the variable
components of the solid. (There may be, however, in equilibrium with the
same stable fluid, a finite number of different solid bodies, composed of the
variable components of the fluid, and having their nature and state completely
determined by the fluid)∗

Effect of Additional Equations of Condition.

As the equations of condition, of which we have made use, are such as always
apply to matter enclosed in a rigid, impermeable, and non-conducting envelop,
the particular conditions of equilibrium which we have found will always be
sufficient for equilibrium. But the number of conditions necessary for equi-
librium, will be diminished, in a case otherwise the same, as the number of
equations of condition is increased. Yet the problem of equilibrium which has
been treated will sufficiently indicate the method to be pursued in all cases
and the general nature of the results.

It will be observed that the position of the various homogeneous parts of
the given mass, which is otherwise immaterial, may determine the existence
of certain equations of condition. Thus, when different parts of the system in
which a certain substance is a variable component are entirely separated from
one another by parts of which this substance is not a component, the quantity
of this substance will be invariable for each of the parts of the system which
are thus separated, which will be easily expressed by equations of condition.
Other equations of condition may arise from the passive forces (or resistances
to change) inherent in the given masses. In the problem which we are next to
consider there are equations of condition due to a cause of a different nature.

Effect of a Diaphragm (Equilibrium of Osmotic Forces).

If the given mass, enclosed as before, is divided into two parts, each of which
is homogeneous and fluid, by a diaphragm which is capable of supporting an
excess of pressure on either side, and is permeable to some of the components
and impermeable to others, we shall have the equations of condition

δη1 ` δη2 “ 0, (72)

δv1 “ 0, δv2 “ 0, (73)
and for the components which cannot pass the diaphragm

δm1
a “ 0, δm2

a “ 0, δm1
b “ 0, δm2

b “ 0, etc., (74)
∗ The solid has been considered as subject only to isotropic stresses. The effect of other stresses will be

considered hereafter.
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and for those which can

δm1
4 ` δm2

4 “ 0, δm1
i ` δm2

i “ 0, etc. (75)

With these equations of condition, the general condition of equilibrium (see
(15)) will give the following particular conditions:—

t1 “ t2. (76)

and for the components which can pass the diaphragm, if actual components
of both masses,

µ1
h “ µ2

h, µ1
l “ µ2

l , etc. (77)
but not

p1 “ p2,

nor
µ1
a “ µ2

a, µ1
b “ µ2

b , etc.

Again, if the diaphragm is permeable to the components in certain pro-
portions only, or in proportions not entirely determined yet subject to certain
conditions, these conditions may be expressed by equations of condition, which
will be linear equations between δm1

1, δm1
2, etc., and if these be known the de-

duction of the particular conditions of equilibrium will present no difficulties.
We will however observe that if the components S1, S2, etc. (being actual
components on each side) can pass the diaphragm simultaneously in the pro-
portions a1, a2, etc. (without other resistances than such as vanish with the
velocity of the current), values proportional to a1, a2, etc. are possible for δm1

1,
δm1

2, etc. in the general condition of equilibrium, δm1
1, δm2

2, etc. having the
same values taken negatively, so that we shall have for one particular condition
of equilibrium

a1µ
1
1 ` a2µ

1
2 ` etc. “ a1µ

2
1 ` a2µ

2
2 ` etc. (78)

There will evidently be as many independent equations of this form as there
are independent combinations of the elements which can pass the diaphragm.

These conditions of equilibrium do not of course depend in any way upon
the supposition that the volume of each fluid mass is kept constant, if the
diaphragm is in any case supposed immovable. In fact, we may easily obtain
the same conditions of equilibrium, if we suppose the volumes variable. In this
case, as the equilibrium must be preserved by forces acting upon the external
surfaces of the fluids, the variation of the energy of the sources of these forces
must appear in the general condition of equilibrium, which will be

δε1 ` δε2 ` P 1δv1 ` P 2δv2 ŕ 0, (79)
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P 1 and P 2 denoting the external forces per unit of area. (Compare (14).)
From this condition we may evidently derive the same internal conditions of
equilibrium as before, and in addition the external conditions

p1 “ P 1, p2 “ P 2. (80)

In the preceding paragraphs it is assumed that the permeability of the
diaphragm is perfect, and its impermeability absolute, i.e., that it offers no
resistance to the passage of the components of the fluids in certain proportions,
except such as vanishes with the velocity, and that in other proportions the
components cannot pass at all. How far these conditions are satisfied in any
particular case is of course to be determined by experiment.

If the diaphragm is permeable to all the n components without restriction,
the temperature and the potentials for all the components must be the same
on both sides. Now, as one may easily convince himself a mass having n
components is capable of only n`1 independent variations in nature and state.
Hence, if the fluid on one side of the diaphragm remains without change, that
on the other side cannot (in general) vary in nature or state. Yet the pressure
will not necessarily be the same on both sides. For, although the pressure is
a function of the temperature and the n potentials, it may be a many-valued
function (or any one of several functions) of these variables. But when the
pressures are different on the two sides, the fluid which has the less pressure
will be practically unstable, in the sense in which the term has been used on
page 25. For

ε2 ´ t2η2 ` p2v2 ´ µ2
1m

2
1 ´ µ2

2m
2
2 . . . ´ µ2

nm
2
n “ 0. (81)

as appears from equation (12) if integrated on the supposition that the nature
and state of the mass remain unchanged. Therefore, if p1 ă p2 while t1 “ t2,
µ1
1 “ µ2

1, etc.,

ε2 ´ t1η2 ` p1v2 ´ µ1
1m

2
1 ´ µ1

2m
2
2 . . . ´ µ1

nm
2
n ă 0. (82)

This relation indicates the instability of the fluid to which the single accents
refer. (See page 25.)

But independently of any assumption in regard to the permeability of the
diaphragm, the following relation will hold true in any case in which each of
the two fluid masses may be regarded as uniform throughout in nature and
state. Let the character D be used with the variables which express the
nature, state, and quantity of the fluids to denote the increments of the values
of these quantities actually occurring in a time either finite or infinitesimal.
Then, as the heat received by the two masses cannot exceed t1Dη1 ` t2Dη2,
and as the increase of their energy is equal to the difference of the heat they
receive and the work they do,

Dε1 ` Dε2 ő t1Dη1 ` t2Dη2 ´ p1Dv1 ´ p2Dv2, (83)
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i.e., by (12),

µ1
1Dm

1
1 ` µ2

1Dm
2
1 ` µ1

2Dm
1
2 ` µ2

2Dm
2
2 ` etc. ő 0. (84)

or
pµ2

1 ´ µ1
1qDm

2
1 ` pµ2

2 ´ µ1
2qDm

2
2 ` etc. ő 0. (85)

It is evident that the sign “ holds true only in the limiting case in which
no motion takes place.
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Definition and Properties of Fundamental Equations.

The solution of the problems of equilibrium which we have been considering has
been made to depend upon the equations which express the relations between
the energy, entropy, volume, and the quantities of the various components,
for homogeneous combinations of the substances which are found in the given
mass. The nature of such equations must be determined by experiment. As,
however, it is only differences of energy and of entropy that can be measured,
or indeed that have a physical meaning, the values of these quantities are so
far arbitrary, that we may choose independently for each simple substance
the state in which its energy and its entropy are both zero. The values of the
energy and the entropy of any compound body in any particular state will then
be fixed. Its energy will be the sum of the work and heat expended in bringing
its components from the states in which their energies and their entropies are
zero into combination and to the state in question; and its entropy is the value
of the integral

ş dQ

t
for any reversible process by which that change is effected

pdQ denoting an element of the heat communicated to the matter thus treated,
and t the temperature of the matter receiving it). In the determination both of
the energy and of the entropy, it is understood that at the close of the process,
all bodies which have been used, other than those to which the determinations
relate, have been restored to their original state, with the exception of the
sources of the work and heat expended, which must be used only as such
sources.

We know, however, a priori, that if the quantity of any homogeneous mass
containing n independently variable components varies and not its nature or
state, the quantities ε, η, v,m1,m2, . . .mn will all vary in the same proportion;
therefore it is sufficient if we learn from experiment the relation between all
but any one of these quantities for a given constant value of that one. Or, we
may consider that we have to learn from experiment the relation subsisting
between the n ` 2 ratios of the n ` 3 quantities ε, η, v,m1,m2, . . .mn. To fix
our ideas we may take for these ratios ε

v
, η
v

, m1

v
, m2

v
, etc., that is, the separate

densities of the components, and the ratios ε
v

and η

v
, which may be called the

densities of energy and entropy. But when there is but one component, it may
be more convenient to choose ε

m
, η

m
, v

m
as the three variables. In any case,

it is only a function of n` 1 independent variables, of which the form is to be
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determined by experiment.
Now if ε is a known function of η, v,m1,m2, . . .mn as by equation (12)

dε “ tdη ´ pdv ` µ1dm1 ` µ2dm2 . . . ` µndmn, (86)

t, p, µ1, µ2, . . . µn are functions of the same variables, which may be derived
from the original function by differentiation, and may therefore be considered
as known functions. This will make n ` 3 independent known relations be-
tween the 2n ` 5 variables, ε, η, v,m1,m2, . . .mn, t, p, µ1, µ2, . . . µn. These are
all that exist, for of these variables, n ` 2 are evidently independent. Now
upon these relations depend a very large class of the properties of the com-
pound considered, —we may say in general, all its thermal, mechanical, and
chemical properties, so far as active tendencies are concerned, in cases in which
the form of the mass does not require consideration. A single equation from
which all these relations may he deduced we will call a fundamental equation
for the substance in question. We shall hereafter consider a more general form
of the fundamental equation for solids, in which the pressure at any point is
not supposed to be the same in all directions. But for masses subject only to
isotropic stresses an equation between ε, η, v,m1,m2, . . .mn is a fundamental
equation. There are other equations which possess this same property:∗

Let
ψ “ ε ´ tη, (87)

then by differentiation and comparision with (86) we obtain

dψ “ ´ηdt ´ pdv ` µ1dm1 ` µ2dm2 . . . ` µndmn. (88)

If, then, ψ is known as a function of t, v,m1,m2, . . .mn, we can find η, p, µ1, µ2,
. . . µn in terms of the same variables. If we then substitute for ψ in our original
equation its value taken from eq. (87), we shall have again n` 3 independent
relations between the same 2n ` 5 variables as before.

Let
χ “ ε ` pv (89)

then by ( 86 ),

dχ “ tdη ` vdp ` µ1dm1 ` µ2dm2 . . . ` µndmn. (90)

If, then, χ be known as a function of η, p,m1,m2, . . .mn, we can find t, v, µ1,
µg, . . . µn in terms of the same variables. By eliminating χ, we may obtain
again n`3 independent relations between the same 2n`5 variables as at first.

∗ M. Massien (Comptes Rendus, T. Ixix, 1869, p. 858 and p. 1057) has shown how all the properties of
a fluid “which are considered in thermodynamics” may be deduced from a single function, which he calls a
characteristic function of the fluid considered. In the papers cited, he introduces two different functions of
this kind, viz. a function of the temperature and volume, which he denotes by ψ, the value of which in our
notation would be ´ε ` tη

t
or ´ψ

t
; and a function of the temperature and pressure, which he denotes by

ψ1, the value of which in our notation would be ´ε ` tη ´ pv

t
or ´ζ

t
. In both cases he considers a constant

quantity (one kilogram) of the fluid, which is regarded as invariable in composition.
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Let
ζ “ ε ´ tη ` pv (91)

then, by (86),

dζ “ ´ηdt ` vdp ` µ1dm1 ` µ2dm2 . . . ` µndmn (92)

If, then, ζ is known as a function of t, p,m1,m2, . . .mn, we can find η, v, µ1, µ2,
. . . µn in terms of the same variables. By eliminating ζ, we may obtain again
n ` 3 independent relations between the same 2n ` 5 variables as at first.

If we integrate (86), supposing the quantity of the compound substance
considered to vary from zero to any finite value its nature and state remaining
unchanged, we obtain

ε “ tη ´ pv ` µ1m1 ` µ2m2 . . . ` µnmn, (93)

and by (87),(89),(91)

ψ “ ´pv ` µ1m1 ` µ2m2 . . . ` µnmn, (94)

χ “ tη ` µ1m1 ` µ2m2 . . . ` µnmn, (95)

ζ “ µ1m1 ` µ2m2 . . . ` µnmn. (96)
The last three equations may also be obtained directly by integrating (88),
(90), and (92).

If we differentiate (93) in the most general manner, and compare the result
with (86), we obtain

´vdp ` ηdt ` m1dµ1 ` m2dµ2 . . . ` mndµn “ 0, (97)

or
dp “

η

v
dt `

m1

v
dµ1 `

m2

v
dµ2 . . . `

mn

v
dµn (98)

Hence, there is a relation between the n ` 2 quantities t, p, µ1, µ2, . . . , µn,
which, if known, will enable us to find in terms of these quantities all the ratios
of the n ` 2 quantities η, v,m1,m2, . . .mn. With (93), this will make n ` 3
independent relations between the same 2n ` 5 variables as at first.

Any equation, therefore, between the quantities
ε, η, v, m1, m2, . . .mn, (99)

or ψ, t, v, m1, m2, . . .mn, (100)
or χ, η, p, m1, m2, . . .mn, (101)
or ζ, t, p, m1, m2, . . .mn, (102)
or t, p, µ1, µ2, . . . µn, (103)
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is a fundamental equation, and any such is entirely equivalent to any other.∗
For any homogeneous mass whatever, considered (in general) as variable in
composition, in quantity, and in thermodynamic state, and having n inde-
pendently variable components, to which the subscript numerals refer (but
not excluding the case in which n “ 1 and the composition of the body is
invariable), there is a relation between the quantities enumerated in any one
of the above sets, from which, if known, with the aid only of general princi-
ples and relations, we may deduce all the relations subsisting for such a mass
between the quantities ε, ψ, χ, ζ, η, v,m1,m2, . . .mn, t, p, µ1, µ2, . . . µn. It will
be observed that, besides the equations which define ψ, χ, and ζ, there is one
finite equation, (93), which subsists between these quantities independently of
the form of the fundamental equation.

Other sets of quantities might of course be added which possess the same
property. The sets (100), (101), (102) are mentioned on account of the impor-
tant properties of the quantities ψ, χ, ζ, and because the equations (88), (90),
(92), like (86), afford convenient definitions of the potentials, viz.,

µ1 “

ˆ

dε

dm1

˙

η,v,m

“

ˆ

dψ

dm1

˙

t,v,m

“

ˆ

dχ

dm1

˙

q,p,m

“

ˆ

dζ

dm1

˙

t,p,m

(104)

etc., where the subscript letters denote the quantities which remain constant
in the differentiation, m being written for brevity for all the letters m1,m2,
. . .mn except the one occurring in the denominator. It will be observed that the
quantities in (103) are all independent of the quantity of the mass considered,
and are those which must, in general, have the same value in contiguous masses
in equilibrium.

On the quantities ψ, χ, ζ.

The quantity ψ has been defined for any homogeneous mass by the equation

ψ “ ε ´ tη (105)
∗ The distinction between equations which are, and which are not, fundamental, in the sense in which

the word is here usel, may be illustrated by comparing an equation between
ε, η, v,m1,m2, . . .mn

with one between
ε, t, v,m1,m2, . . .mn

as, by (86),

t “

ˆ

dε

dη

˙

vm

the second equation may evidently be derived from the first. But the first equation cannot be derived from
the second; for an equation between

ε,

ˆ

dε

dη

˙

vm

, v,m1,m2, . . .mn

is equivalent to one between
ˆ

dη

dε

˙

vm

, ε, v,m1,m2, . . .mn which is evidently not sufficient to determine the

value of η in terms of the other variables.
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We may extend this definition to any material system whatever which has a
uniform temperature throughout.

If we compare two states of the system of the same temperature. we have

ψ1 ´ ψ2 “ ε1 ´ ε2 ´ t pη1 ´ η2q . (106)

If we suppose the system brought from the first to the second of these states
without change of temperature and by a reversible process in which W is the
work done and Q the heat received by the system, then

ε1 ´ ε2 “ W ´ Q, (107)

and
t pη2 ´ η1q “ Q. (108)

Hence
ψ1 ´ ψ2 “ W ; (109)

and for an infinitely small reversible change in the state of the system, in which
the temperature remains constant, we may write

´dψ “ dW. (110)

Therefore, ´ψ is the force function of the system for constant temperature,
just as ´ε is the force function for constant entropy. That is, if we consider ψ as
a function of the temperature and the variables which express the distribution
of the matter in space, for every different value of the temperature ´ψ is the
different force function required by the system if maintained at that special
temperature.

From this we may conclude that when a system has a uniform temperature
throughout, the additional conditions which are necessary and sufficient for
equilibrium may be expressed by

pδψqt ŕ 0.∗ (111)

When it is not possible to bring the system from one to the other of the
states to which ψ1 and ψ2 relate by a reversible process without altering the

∗ This general condition of equilibrium might be used instead of (2) in such problems of equilibrium as
we have considered and others which we shall consider hereafter with evident advantage in respect to the
brevity of the formula, as the limitation expressed by the subscript t in (111) applies to every part of the
system taken separately, and diminishes by one the number of independent variations in the state of these
parts which we have to consider. The more cumbersome course adopted in this paper has been chosen,
among other reasons, for the sake of deducing all the particular conditions of equilibrium from one general
condition, and of having the quantities mentioned in this general condition such as are most generally used
and most simply defined; and because in the longer formula as given, the reader will easily see in each case
the form which they would take if we should adopt (111) an the general condition of equilibrium, which
would be in effect to take the thermal condition of equilibrium for granted, and to seek only the remaining
conditions. For example, in the problem treated on pages 63 ff., we would obtain from (111) by (88) a
condition precisely like (15), except that the terms tδη1, tδη2, etc., would be wanting.
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temperature, it will be observed that it is not necessary for the validity of
(107)-(109) that the temperature of the system should remain constant during
the reversible process to which W and Q relate, provided that the only source
of heat or cold used has the same temperature as the system in its initial or
final state. Any external bodies may be used in the process in any way not
affecting the condition of reversibility, if restored to their original condition at
the close of the process; nor does the limitation in regard to the use of heat
apply to such heat as may be restored to the source from which it has been
taken.

It may be interesting to show directly the equivalence of the conditions
(111) and (2) when applied to a system of which the temperature in the given
state is uniform throughout.

If there are any variations in the state of such a system which do not satisfy
(2), then for these variations

δε ă 0 and δη “ 0.

If the temperature of the system in its varied state is not uniform, we may
evidently increase its entropy without altering its energy by supposing heat to
pass from the warmer to the cooler parts. And the state having the greatest
entropy for the energy ε`δε will necessarily be a state of uniform temperature.
For this state (regarded as a variation from the original state)

δε ă 0 and δη ą 0.

Hence, as we may diminish both the energy and the entropy by cooling the
system, there must be a state of uniform temperature for which (regarded as
a variation of the original state)

δε ă 0 and δη “ 0.

From this we may conclude that for systems of initially uniform temperature
condition (2) will not be altered if we limit the variations to such as do not
disturb the uniformity of temperature.

Confining our attention, then, to states of uniform temperature, we have
by differentiation of (105)

δε ´ tδη “ δψ ` ηδt. (112)

Now there are evidently changes in the system (produced by heating or cooling)
for which

δε ´ tδη “ 0 and therefore δψ ` ηδt “ 0. (113)
neither δη nor δt having the value zero. This consideration is sufficient to show
that the condition (2) is equivalent to

δε ´ tδη ŕ 0, (114)
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and that the condition (111) is equivalent to

δψ ` ηδt ŕ 0, (115)

and by (112) the two last conditions are equivalent.
In such cases as we have considered on pages 8—28, in which the form and

position of the masses of which the system is composed are immaterial, unifor-
mity of temperature and pressure are always necessary for equilibrium, and the
remaining conditions, when these are satisfied, may be conveniently expressed
by means of the function ζ, which has been defined for a homogeneous mass
on page 34, and which we will here define for any mass of uniform temperature
and pressure by the same equation

ζ “ ε ´ tη ` pv. (116)

For such a mass, the condition of (internal) equilibrium is

pδζqt,p ŕ 0. (117)

That this condition is equivalent to (2) will easily appear from considerations
like those used in respect to (111).

Hence, it is necessary for the equilibrium of two contiguous masses identical
in composition that the values of ζ as determined for equal quantities of the
two masses should be equal. Or, when one of three contiguous masses can be
formed out of the other two, it is necessary for equilibrium that the value of ζ
for any quantity of the first mass should be equal to the sum of the values of ζ
for such quantities of the second and third masses as together contain the same
matter. Thus, for the equilibrium of a solution composed of a parts of water
and b parts of a salt which is in contact with vapor of water and crystals of
the salt, it is necessary that the value of ζ for the quantity a` b of the solution
should be equal to the sum of the values of ζ for the quantities a of the vapor
and b of the salt. Similar propositions will hold true in more complicated cases.
The reader will easily deduce these conditions from the particular conditions
of equilibrium given on page 20.

In like manner we may extend the definition of χ to any mass or combination
of masses in which the pressure is everywhere the same. using ε for the energy
and v for the volume of the whole and setting as before

χ “ ε ` pv (118)

If we denote by Q the heat received by the combined masses from external
sources in any process in which the pressure is not varied, and distinguish the
initial and final states of the system by accents we have

χ2 ´ χ1 “ ε2 ´ ε1 ` p pv2 ´ v1q “ Q. (119)

This function may therefore be called the heat function for constant pressure
(just as the energy might be called the heat function for constant volume), the
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diminution of the function representing in all cases in which the pressure is
not varied the heat given out by the system. In all cases of chemical action in
which no heat is allowed to escape the value of χ remains unchanged.
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Potentials.

In the definition of the potentials µ1, µ2, etc., the energy of a homogeneous
mass was considered as a function of its entropy, its volume, and the quantities
of the various substances composing it. Then the potential for one of these
substances was defined as the differential coefficient of the energy taken with
respect to the variable expressing the quantity of that substance. Now, as the
manner in which we consider the given mass as composed of various substances
is in some degree arbitrary, so that the energy may be considered as a function
of various different sets of variables expressing quantities of component sub-
stances, it might seem that the above definition does not fix the value of the
potential of any substance in the given mass, until we have fixed the manner
in which the mass is to be considered as composed. For example, if we have
a solution obtained by dissolving in water a certain salt containing water of
crystallization, we may consider the liquid as composed of mS weight-units of
the hydrate and mW of water, or as composed of ms, of the anhydrous salt
and mw of water. It will be observed that the values of mS and ms are not the
same, nor those of mW and mw, and hence it might seem that the potential
for water in the given liquid considered as composed of the hydrate and water,
viz.,

ˆ

dε

dmW

˙

η,v,mS

,

would be different from the potential for water in the same liquid considered
as composed of anhydrous salt and water, viz.,

ˆ

dε

dmw

˙

η,v,ms

.

The value of the two expressions is, however, the same, for, although mW

is not equal to mw, we may of course suppose dmW to be equal to dmw, and
then the numerators in the two fractions will also be equal, as they each denote
the increase of energy of the liquid, when the quantity dmW or dmw of water
is added without altering the entropy and volume of the liquid. Precisely the
same considerations will apply to any other case.

In fact, we may give a definition of a potential which shall not presuppose
any choice of a particular set of substances as the components of the homoge-
neous mass considered.
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Definition.—If to any homogeneous mass we suppose an infinitesimal quan-
tity of any substance to be added, the mass remaining homogeneous and its
entropy and volume remaining unchanged, the increase of the energy of the
mass divided by the quantity of the substance added is the potential for that
substance in the mass considered. (For the purposes of this definition, any
chemical element or combination of elements in given proportions may be
considered a substance, whether capable or not of existing by itself as a ho-
mogeneous body.)

In the above definition we may evidently substitute for entropy, volume,
and energy, respectively, either temperature, volume, and the function ψ; or
entropy, pressure, and the function χ; or temperature, pressure, and the func-
tion ζ. (Compare equation (104).)

In the same homogeneous mass, therefore, we may distinguish the poten-
tials for an indefinite number of substances, each of which has a perfectly
determined value.

Between the potentials for different substances in the same homogeneous
mass the same equations will subsist as between the units of these substances.
That is, if the substances, Sa, Sb, etc., Sk, Sl etc. are components of any given
homogeneous mass, and are such that

αSa ` βSb ` etc. “ κSk ` λSl ` etc., (120)

Sa,Sb, etc., Sk,Sl etc., denoting the units of the several substances, and α, β,
etc., κ, λ, etc., denoting numbers, then if µa, µb, etc., µk, µl etc. denote the
potentials for these substances in the homogeneous mass,

αµa ` βµb ` etc. “ κµk ` λµl ` etc. (121)

To show this, we will suppose the mass considered to be very large. Then, the
first member of (121) denotes the increase of the energy of the mass produced
by the addition of the matter represented by the first member of (120), and
the second member of (121) denotes the increase of energy of the same mass
produced by the addition of the matter represented by the second member of
(120), the entropy and volume of the mass remaining in each case unchanged.
Therefore, as the two members of (120) represent the same matter in kind and
quantity, the two members of (121) must be equal.

But it must be understood that equation (120) is intended to denote equiv-
alence of the substances represented in the mass considered, and not merely
chemical identity; in other words, it is supposed that there are no passive
resistances to change in the mass considered which prevent the substances
represented by one member of (120) from passing into those represented by
the other. For example, in respect to a mixture of vapor of water and free
hydrogen and oxygen (at ordinary temperatures), we may not write

9SAq “ 1SH ` 8SO,
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but water is to be treated as an independent substance, and no necessary
relation will subsist between the potential for water and the potentials for
hydrogen and oxygen.

The reader will observe that the relations expressed by equations (43) and
(51) (which are essentially relations between the potentials for actual compo-
nents in different parts of a mass in a state of equilibrium) are simply those
which by (121) would necessarily subsist between the same potentials in any
homogeneous mass containing as variable components all the substances to
which the potentials relate.

In the case of a body of invariable composition, the potential for the single
component is equal to the value of ζ for one unit of the body, as appears from
the equation

ζ “ µm, (122)
to which (96) reduces in this case. Therefore, when n “ 1, the fundamental
equation between the quantities in the set (102) (see page 34) and that be-
tween the quantities in (103) may be derived either from the other by simple
substitution. But, with this single exception, an equation between the quanti-
ties in one of the sets (99)–(103) cannot be derived from the equation between
the quantities in another of these sets without differentiation.

Also in the case of a body of variable composition, when all the quantities of
the components except one vanish, the potential for that one will be equal to
the value of ζ for one unit of the body. We may make this occur for any given
composition of the body by choosing as one of the components the matter
constituting the body itself, so that the value of ζ for one unit of a body may
always be considered as a potential. Hence the relations between the values of
ζ for contiguous masses given on page 37 may be regarded as relations between
potentials.

The two following propositions afford definitions of a potential which may
sometimes be convenient.

The potential for any substance in any homogeneous mass is equal to the
amount of mechanical work required to bring a unit of the substance by a
reversible process from the state in which its energy and entropy are both
zero into combination with the homogeneous mass, which at the close of the
process must have its original volume, and which is supposed so large as not
to be sensibly altered in any part. All other bodies used in the process must
by its close be restored to their original state, except those used to supply the
work, which must be used only as the source of the work. For, in a reversible
process, when the entropies of other bodies are not altered, the entropy of
the substance and mass taken together will not be altered. But the original
entropy of the substance is zero: therefore the entropy of the mass is not
altered by the addition of the substance. Again, the work expended will be
equal to the increment of the energy of the mass and substance taken together,
and therefore equal, as the original energy of the substance is zero, to the
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increment of energy of the mass due to the addition of the substance, which
by the definition on page 40 is equal to the potential in question.

The potential for any substance in any homogeneous mass is equal to the
work: required to bring a unit of the substance by a reversible process from
a state in which ψ “ 0 and the temperature is the same as that of the given
mass into combination with this mass, which at the close of the process must
have the same volume and temperature as at first, and which is supposed so
large as not to be sensibly altered in any part. A source of heat or cold of
the temperature of the given mass is allowed, with this exception other bodies
are to be used only on the same conditions as before. This may be shown by
applying equation (109) to the mass and substance taken together.

The last proposition enables us to see very easily how the value of the
potential is affected by the arbitrary constants involved in the definition of the
energy and the entropy of each elementary substance. For we may imagine
the substance brought from the state in which ψ “ 0 and the temperature is
the same as that of the given mass, first to any specified state of the same
temperature, and then into combination with the given mass. In the first part
of the process the work expended is evidently represented by the value of ψ for
the unit of the substance in the state specified. Let this be denoted by ψ1, and
let µ denote the potential in question, and W the work expended in bringing a
unit of the substance from the specified state into combination with the given
mass as aforesaid; then

µ “ ψ1 ` W. (123)
Now as the state of the substance for which ε “ 0 and η “ 0 is arbitrary, we
may simultaneously increase the energies of the unit of the substance in all
possible states by any constant C, and the entropies of the substance in all
possible states by any constant K. The value of ψ, or ε ´ tη, for any state
would then be increased by C ´ tK, t denoting the temperature of the state.
Applying this to ψ1 in (123) and observing that the last term in this equation
is independent of the values of these constants, we see that the potential would
be increased by the same quantity C´tK, t being the temperature of the mass
in which the potential is to be determined.
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On Coexistent Phases of Matter.

In considering the different homogeneous bodies which can be formed out of
any set of component substances, it will be convenient to have a term which
shall refer solely to the composition and thermodynamic state of any such
body without regard to its quantity or form. We may call such bodies as differ
in composition or state different phases of the matter considered, regarding all
bodies which differ only in quantity and form as different examples of the same
phase. Phases which can exist together, the dividing surfaces being plane, in
an equilibrium which does not depend upon passive resistances to change, we
shall call coexistent.

If a homogeneous body has n independently variable components, the phase
of the body is evidently capable of n ` 1 independent variations. A system
of r coexistent phases, each of which has the same n independently variable
components is capable of n`2´r variations of phase. For the temperature, the
pressure, and the potentials for the actual components have the same values in
the different phases, and the variations of these quantities are by (97) subject
to as many conditions as there are different phases. Therefore, the number
of independent variations in the values of these quantities, i.e., the number of
independent variations of phase of the system, will be n ` 2 ´ r.

Or, when the r bodies considered have not the same independently variable
components, if we still denote by n the number of independently variable
components of the r bodies taken as a whole, the number of independent
variations of phase of which the system is capable will still be n`2´r. In this
case, it will be necessary to consider the potentials for more than n component
substances. Let the number of these potentials be n ` h. We shall have by
(97), as before, r relations between the variations of the temperature, of the
pressure, and of these n`h potentials, and we shall also have by (43) and (51)
h relations between these potentials, of the same form as the relations which
subsist between the units of the different component substances.

Hence, if r “ n ` 2, no variation in the phases (remaining coexistent) is
possible. It does not seem probable that r can ever exceed n` 2. An example
of n “ 1 and r “ 3 is seen in the coexistent solid, liquid, and gaseous forms
of any substance of invariable composition. It seems not improbable that in
the case of sulphur and some other simple substances there is more than one
triad of coexistent phases; but it is entirely improbable that there are four
coexistent phases of any simple substance. An example of n “ 2 and r “ 4
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is seen in a solution of a salt in water in contact with vapor of water and two
different kinds of crystals of the salt.

Concerning n ` 1 Coexistent Phases.

We will now seek the differential equation which expresses the relation between
the variations of the temperature and the pressure in a system of n ` 1 co-
existent phases ( n denoting, as before, the number of independently variable
components in the system taken as a whole).

In this case we have n ` 1 equations of the general form of (97) (one for
each of the coexistent phases), in which we may distinguish the quantities η,
v,m1,m2, etc. relating to the different phases by accents. But t and p will
each have the same value throughout, and the same is true of µ1, µ2, etc.,
so far as each of these occurs in the different equations. If the total number
of these potentials is n ` h, there will be h independent relations between
them, corresponding to the h independent relations between the units of the
component substances to which the potentials relate, by means of which we
may eliminate the variations of h of the potentials from the equations of the
form of (97) in which they occur.

Let one of these equations be

v1dp “ η1dt ` m1
adµa ` m1

bdµb ` etc. (124)

and by the proposed elimination let it become

v1dp “ η1dt ` A1
1dµ1 ` A1

2dµ2 . . . ` A1
ndµn (125)

It will be observed that µa, for example, in (124) denotes the potential in the
mass considered for a substance Sa which may or may not be identical with
any of the substances S1, S2, etc., to which the potentials in (125) relate. Now
as the equations between the potentials by means of which the elimination is
performed are similar to those which subsist between the units of the corre-
sponding substances (compare equations (38), (43), and (51)), if we denote
these units by Sa, Sb, etc., S1,S2, etc., we must also have

m1
aSa ` m1

bSb ` etc. “ A1
1S1 ` A1

2S2 . . . ` A1
nSn. (126)

But the first member of this equation denotes (in kind and quantity) the matter
in the body to which equations (124) and (125) relate. As the same must be
true of the second member, we may regard this same body as composed of the
quantity A1

1 of the substance S1, with the quantity A1
2 of the substance S2, etc.

We will therefore, in accordance with our general usage, write m1
1,m

1
2, etc., for

A1
1, A

1
2, etc., in (125), which will then become

v1dp “ η1dt ` m1
1dµ1 ` m1

2dµ2 . . . ` m1
ndµn. (127)
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But we must remember that the components to which the m1
1,m

1
2, etc., of this

equation relate are not necessarily independently variable, as are the compo-
nents to which the similar expressions in (97) and (124) relate. The rest of the
n ` 1 equations may be reduced to a similar form. viz.,

v2dp “ η2dt ` m2
1dµ1 ` m2

2dµ2 . . . ` m2
ndµn, (128)

etc.
By elimination of dµ1, dµ2, . . . dµn from these equations we obtain
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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n
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ˇ

ˇ

ˇ

dt (129)

In this equation we may make v1, v2, etc., equal to unity. Then m1
1,m

1
2,m

2
1, etc.,

will denote the separate densities of the components in the different phases,
and n1, η2. etc., the densities of entropy.

When n “ 1,

pm2v1 ´ m1v2q dp “ pm2η1 ´ m1η2q dt, (130)

or, if we make m1 “ 1 and m2 “ 1, we have the usual formula

dp

dt
“
η1 ´ η2

v1 ´ v2
“

Q

t pv2 ´ v1q
, (131)

in which Q denotes the heat absorbed by a unit of the substance in passing
from one state to the other without change of temperature or pressure.

Concerning Cases in which the Number of Coexistent
Phases is less than n ` 1.

When n ą 1, if the quantities of all the components S1, S2, . . . Sn are propor-
tional in two coexistent phases, the two equations of the form of (127) and
(128) relating to these phases will be sufficient for the elimination of the vari-
ations of all the potentials. In fact, the condition of the coexistence of the
two phases together with the condition of the equality of the n ´ 1 ratios of
m1

1,m
1
2, . . .m

1
n with the n´ 1 ratios of m2

1,m
2
2, . . .m

2
n is sufficient to determine

p as a function of t if the fundamental equation is known for each of the phases.
The differential equation in this case may be expressed in the form of (130),
m1and m2 denoting either the quantities of any one of the components or the
total quantities of matter in the bodies to which they relate. Equation (131)
will also hold true in this case if the total quantity of matter in each of the
bodies is unity. But this case differs from the preceding in that the matter
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which absorbs the heat Q in passing from one state to another, and to which
the other letters in the formula relate, although the same in quantity, is not in
general the same in kind at different temperatures and pressures. Yet the case
will often occur that one of the phases is essentially invariable in composition,
especially when it is a crystalline body, and in this case the matter to which
the letters in (131) relate will not vary with the temperature and pressure.

When n “ 2, two coexistent phases are capable, when the temperature is
constant, of a single variation in phase. But as (130) for constant temperature
the pressure is in general a maximum or a minimum when the composition
of the two phases is identical. In like manner, the temperature of the two
coexistent phases is in general a maximum or a minimum, for constant pres-
sure, when the composition of the two phases is identical. Hence, the series
of simultaneous values of t and p for which the composition of two coexistent
phases is identical separates those simultaneous values of t and p for which no
coexistent phases are possible from those for which there are two pair of coexis-
tent phases. This may be applied to a liquid having two independently variable
components in connection with the vapor which it yields, or in connection with
any solid which may be formed in it.

When n “ 3, we have for three coexistent phases three equations of the
form of (127), from which we may obtain the following,
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ˇ

ˇ

dµ3 (132)

Now the value of the last of these determinants will be zero, when the com-
position of one of the three phases is such as can be produced by combining
the other two. Hence, the pressure of three coexistent phases will in general

be a maximum or minimum for constant temperature, and the temperature
a maximum or minimum for constant pressure, when the above condition in
regard to the composition of the coexistent phases is satisfied. The series of
simultaneous values of t and p for which the condition is satisfied separates
those simultaneous values of t and p for which three coexistent phases are not
possible, from those for which there are two triads of coexistent phases. These
propositions may be extended to higher values of n, and illustrated by the
boiling temperatures and pressures of saturated solutions of n ´ 2 different
solids in solvents having two independently variable components.
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Internal Stability of Homogeneous Fluids as Indicated
by Fundamental Equations.

We will now consider the stability of a fluid enclosed in a rigid envelop which
is non-conducting to heat and impermeable to all the components of the fluid.
The fluid is supposed initially homogeneous in the sense in which we have
before used the word, i.e, uniform in every respect throughout its whole ex-
tent. Let S1, S2, . . . Sn be the ultimate components of the fluid; we may then
consider every body which can be formed out of the fluid to be composed of S1,
S2, . . . Sn, and that in only one way. Let m1,m2, . . .mn denote the quantities
of these substances in any such body, and let ε, η, v, denote its energy, en-
tropy, and volume. The fundamental equation for compounds of S1, S2 . . . Sn,
if completely determined, will give us all possible sets of simultaneous values
of these variables for homogeneous bodies.

Now, if it is possible to assign such values to the constants T, P,M1,M2,
. . .Mn that the value of the expression

ε ´ Tη ` Pv ´ M1m1 ´ M2m2 . . . ´ Mnmn (133)

shall be zero for the given fluid, and shall be positive for every other phase
of the same components, i.e., for every homogeneous body∗ not identical in
nature and state with the given fluid (but composed entirely of S1, S2, . . . Sn
), the condition of the given fluid will be stable.

For, in any condition whatever of the given mass, whether or not homo-
geneous, or fluid, if the value of the expression (133) is not negative for any
homogeneous part of the mass, its value for the whole mass cannot be negative;
and if its value cannot be zero for any homogeneous part which is not identical
in phase with the mass in its given condition, its value cannot be zero for the
whole except when the whole is in the given condition. Therefore, in the case
supposed, the value of this expression for any other than the given condition
of the mass is positive. (That this conclusion cannot be invalidated by the
fact that it is not entirely correct to regard a composite mass as made up of
homogeneous parts having the same properties in respect to energy, entropy,
etc., as if they were parts of larger homogeneous masses, will easily appear
from considerations similar to those adduced on pages 23—23.) If, then, the
value of the expression (133) for the mass considered is less when it is in the

∗ A vacuum is throughout this discussion to be regarded as a limiting case of an extremely rarified body.
We may thus avoid the necessity of the specific mention of a vacuum in propositions of this kind.
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given condition than when it is in any other, the energy of the mass in its given
condition must be less than in any other condition in which it has the same
entropy and volume. The given condition is therefore stable. (See page 3.)

Again, if it is possible to assign such values to the constants in (133) that
the value of the expression shall be zero for the given fluid mass, and shall not
be negative for any phase of the same components, the given condition will be
evidently not unstable. (See page 3.) It will be stable unless it is possible for
the given matter in the given volume and with the given entropy to consist of
homogeneous parts for all of which the value of the expression (133) is zero,
but which are not all identical in phase with the mass in its given condition. (A
mass consisting of such parts would be in equilibrium, as we have already seen
on pages 23, 25.) In this case, if we disregard the quantities connected with
the surfaces which divide the homogeneous parts, we must regard the given
condition as one of neutral equilibrium. But in regard to these homogeneous
parts, which we may evidently consider to be all different phases, the following
conditions must be satisfied. (The accents distinguish the letters referring to
the different parts, and the unaccented letters refer to the whole mass.)

η1 ` η2 ` etc. “ η,

v1 ` v2 ` etc. “ v.

m1
1 ` m2

1 ` etc. “ m1,

m1
2 ` m2

2 ` etc. “ m2,

etc.

(134)

Now the values of η, v,m1,m2, etc., are determined by the whole fluid mass
in its given state, and the values of η

1

v1
,
η2

v2
, etc., m

1
1

v1
,
m2

1

v2
, etc. m1

2

v1
,
m2

2

v2
, etc.,

etc., are determined by the phases of the various parts. But the phases of
these parts are evidently determined by the phase of the fluid as given. They
form, in fact, the whole set of coexistent phases of which the latter is one.
Hence, we may regard (134) as n`2 linear equations between v1, v2, etc. (The
values of v1, v2, etc., are also subject to the condition that none of them can
be negative.) Now one solution of these equations must give us the given
condition of the fluid; and it is not to be expected that they will be capable
of any other solution, unless the number of different homogeneous parts, that
is, the number of different coexistent phases, is greater than n ` 2. We have
already seen (page 45) that it is not probable that this is ever the case.

We may; however, remark that in a certain sense an infinitely large fluid
mass will be in neutral equilibrium in regard to the formation of the substances,
if such there are, other than the given fluid, for which the value of (133) is zero
(when the constants are so determined that the value of the expression is zero
for the given fluid, and not negative for any substance); for the tendency of
such a formation to be reabsorbed will diminish indefinitely as the mass out
of which it is formed increases.
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When the substances S1, S2, . . . Sn are all independently variable compo-
nents of the given mass, it is evident from (86) that the conditions that the
value of (133) shall be zero for the mass as given, and shall not be negative for
any phase of the same components, can only be fulfilled when the constants
T, P,M1,M2 . . .Mn are equal to the temperature, the pressure, and the sev-
eral potentials in the given mass. If we give these values to the constants, the
expression (133) will necessarily have the value zero for the given mass, and
we shall only have to inquire whether its value is positive for all other phases.
But when S1, S2, . . . Sn are not all independently variable components of the
given mass, the values which it will be necessary to give to the constants in
(133) cannot be determined entirely from the properties of the given mass; but
T and P must be equal to its temperature and pressure, and it will be easy
to obtain as many equations connecting M1,M2, . . .Mn with the potentials in
the given mass as it contains independently variable components.

When it is not possible to assign such values to the constants in (133) that
the value of the expression shall be zero for the given fluid, and either zero or
positive for any phase of the same components, we have already seen (pages
21—25 ) that if equilibrium subsists without passive resistances to change, it
must be in virtue of properties which are peculiar to small masses surrounded
by masses of different nature, and which are not indicated by fundamental
equations. In this case, the fluid will necessarily be unstable, if we extend this
term to embrace all cases in which an initial disturbance confined to a small
part of an indefinitely large fluid mass will cause an ultimate change of state
not indefinitely small in degree throughout the whole mass. In the discussion
of stability as indicated by fundamental equations it will be convenient to use
the term in this sense.∗

In determining for any given positive values of T and P and any given
values whatever of M1,M2, . . .Mn whether the expression (133) is capable of
a negative value for any phase of the components S1, S2 . . . Sn and if not,
whether it is capable of the value zero for any other phase than that of which

∗ If we wish to know the stability of the given fluid when exposed to a constant temperature, or to a
constant pressure, or to both, we have only to suppose that there is enclosed in the same envelop with
the given fluid another body (which cannot combine with the fluid) of which the fundamental equation is
c “ Tη, or ε “ ´Pv, or ε “ Tη´Pv, as the case may be ( T and P denoting the constant temperature and
pressure, which of course must be those of the given fluid), and to apply the criteria of page 3 to the whole
system. When it is possible to assign such values to the constants in (133) that the value of the expression
shall be zero for the given fluid and positive for every other phase of the same components, the value of
(133) for the whole system will be less when the system is in its given condition than when it is in any other.
(Changes of form and position of the given fluid are of course regarded as immaterial.) Hence the fluid is
stable. When it is not possible to assign such values to the constants that the value of (133) shall be zero
for the given fluid and zero or positive for any other phase, the fluid is of course unstable. In the remaining
case, when it is possible to assign such values to the constants that the value of (133) shall be zero for the
given fluid and zero or positive for every other phase, but not without the value zero for some other phase,
the state of equilibrium of the fluid as stable or neutral will be determined by the possibility of satisfying,
for any other than the given condition of the fluid, equations like (134), in which, however, the first or the
second or both are to be stricken out, according as we are considering the stability of the fluid for constant
temperature, or for constant pressure, or for both. The number of coexistent phases will sometimes exceed
by one or two the number of the remaining equations, and then the equilibrium of the fluid will be neutral
in respect to one or two independent changes.
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the stability is in question, it is only necessary to consider phases having the
temperature T and pressure P . For we may assume that a mass of matter
represented by any values of m1,m2, . . .mn is capable of at least one state of
not unstable equilibrium (which may or may not be a homogeneous state) at
this temperature and pressure. It may easily be shown that for such a state
the value of ε ´ Tη ` Pv must be as small as for any other state of the same
matter. The same will therefore be true of the value of (133). Therefore if this
expression is capable of a negative value for any mass whatever, it will have
a negative value for that mass at the temperature T and pressure P . And if
this mass is not homogeneous, the value of (133) must be negative for at least
one of its homogeneous parts. So also, if the expression (133) is not capable of
a negative value for any phase of the components, any phase for which it has
the value zero must have the temperature T and the pressure P .

It may easily be shown that the same must be true in the limiting cases in
which T “ 0 and P “ 0. For negative values of P, p133q is always capable of
negative values, as its value for a vacuum is Pv.

For any body of the temperature T and pressure P , the expression (133)
may by (91) be reduced to the form

ζ ´ M1m1 ´ M2m2 . . . ´ Mnmn. (135)

We have already seen (page 23) that an expression like (133), when T, P,M1,
M2, . . .Mn and v have any given finite values, cannot have an infinite negative
value as applied to any real body. Hence. in determining whether (133) is
capable of a negative value for any phase of the components S1, S2 . . . Sn and
if not whether it is capable of the value zero for any other phase than that of
which the stability is in question, we have only to consider the least value of
which it is capable for a constant value of v. Any body giving this value must
satisfy the condition that for constant volume

dε ´ Tdη ´ M1dm1 ´ M2dm2 . . . ´ Mndmn ŕ 0, (136)

or, if we substitute the value of dε taken from equation (86), using subscript
a . . . g for the quantities relating to the actual components of the body, and
subscript h, k for those relating to the possible,

tdη ` µadma . . . ` µgdmg ` µhdmh . . . ` µkdmk

´ Tdη ´ M1dm1 ´ M2dm2 . . . ´ Mndmn ŕ 0. (137)

That is, the temperature of the body must be equal to T , and the potentials
of its components must satisfy the same conditions as if it were in contact and
in equilibrium with a body having potentials M1,M2, . . .Mn. Therefore the
same relations must subsist between µa . . . µg, and M1 . . .Mn as between the
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units of the corresponding substances, so that

maµa . . . ` mgµg “ m1M1 . . . ` mnMn; (138)

and as we have by (93)

ε “ tη ´ pv ` µama . . . ` µgmg (139)

the expression (133) will reduce (for the body or bodies for which it has the
least value per unit of volume) to

pP ´ pqv, (140)

the value of which will be positive, null, or negative, according as the value of

P ´ p (141)

is positive, null, or negative.
Hence, the conditions in regard to the stability of a fluid of which all the

ultimate components are independently variable admit a very simple expres-
sion. If the pressure of the fluid is greater than that of any other phase of
the same components which has the same temperature and the same values of
the potentials for its actual components, the fluid is stable without coexistent
phases; if its pressure is not as great as that of some other such phase, it will
be unstable; if its pressure is as great as that of any other such phase, but not
greater than that of every other, the fluid will certainly not be unstable, and
in all probability it will be stable (when enclosed in a rigid envelop which is
impermeable to heat and to all kinds of matter), but it will be one of a set
of coexistent phases of which the others are the phases which have the same
pressure.

The considerations of the last two pages by which the tests relating to the
stability of a fluid are simplified, apply to such bodies as actually exist. But
if we should form arbitrarily any equation as a fundamental equation, and ask
whether a fluid of which the properties were given by that equation would be
stable, the tests of stability last given would be insufficient, as some of our
assumptions might not be fulfilled by the equation. The test, however, as first
given (pages 48—49) would in all cases be sufficient.

Stability in respect to Continuous Changes of Phase.

In considering the changes which may take place in any mass, we have al-
ready had occasion to distinguish between infinitesimal changes in existing
phases, and the formation of entirely new phases. A phase of a fluid may
be stable in regard to the former kind of change, and unstable in regard to
the latter. In this case it may be capable of continued existence in virtue of
properties which prevent the commencement of discontinuous changes. But a
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phase which is unstable in regard to continuous changes is evidently incapable
of permanent existence on a large scale except in consequence of passive resis-
tances to change. We will now consider the conditions of stability in respect
to continuous changes of phase, or, as it may also be called. stability in re-
spect to adjacent phases. We may use the same general test as before, except
that the expression (133) is to be applied only to phases which differ infinitely
little from the phase of which the stability is in question. In this case the
component substances to be considered will be limited to the independently
variable components of the fluid, and the constants M1,M2, etc., must have
the values of the potentials for these components in the given fluid. The con-
stants in (133) are thus entirely determined and the value of the expression for
the given phase is necessarily zero. If for any infinitely small variation of the
phase the value of (133) can become negative, the fluid will be unstable: but
if for every infinitely small variation of the phase the value of (133) becomes
positive, the fluid will be stable. The only remaining case, in which the phase
can be varied without altering the value of (133) can hardly be expected to
occur. The phase concerned would in such a case have coexistent adjacent
phases. It will be sufficient to discuss the condition of stability (in respect to
continuous changes) without coexistent adjacent phases.

This condition, which for brevity’s sake we will call the condition of stability,
may be written in the form

ε2 ´ t1η2 ` p1v2 ´ µ1
1m

2
1 . . . ´ µ1

nm
2
n ą 0, (142)

in which the quantities relating to the phase of which the stability is in question
are distinguished by single accents, and those relating to the other phase by
double accents. This condition is by (93) equivalent to

ε2 ´ t1η2 ` p1v2 ´ µ1
1m

2
1 . . . ´ µ1

nm
2
n

´ε1 ` t1η1 ´ p1v1 ` µ1
1m

1
1 ¨ ¨ ¨ ` µ1

nm
1
n ą 0,

(143)

and to
´t1η2 ` p1v2 ´ µ1

1m
2
1 ¨ ¨ ¨ ´ µ1

nm
2
n

`t2η2 ´ p2 ¨ v2 ` µ2
1m

2
1 ¨ ¨ ¨ ` µ2

nm
2
n ą 0.

(144)

The condition (143) may be expressed more briefly in the form

∆ε ą t∆η ´ p∆v ` µ1∆m1 . . . ` µn∆mn (145)

if we use the character ∆ to signify that the condition, although relating to
infinitesimal differences, is not to be interpreted in accordance with the usual
convention in respect to differential equations with neglect of infinitesimals of
higher orders than the first, but is to be interpreted strictly, like an equation
between finite differences. In fact, when a condition like (I45) (interpreted
strictly) is satisfied for infinitesimal differences, it must be possible to assign
limits within which it shall hold true of finite differences. But it is to be
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remembered that the condition is not to be applied to any arbitrary values
of ∆η,∆v,∆m1, . . .∆mn, but only to such as are determined by a change of
phase. (If only the quantity of the body which determines the value of the
variables should vary and not its phase, the value of the first member of (145)
would evidently be zero.) We may free ourselves from this limitation by making
v constant, which will cause the term ´p∆v to disappear. If we then divide
by the constant v, the condition will become

∆
ε

v
ą t∆

η

v
` µ1∆

m1

v
. . . ` µn∆

mn

v
, (146)

in which form it will not be necessary to regard v as constant. As we may
obtain from (86)

d
ε

v
“ td

η

v
` µ1d

m1

v
. . . ` µnd

mn

v
, (147)

we see that the stability of any phase in regard to continuous changes depends
upon the same conditions in regard to the second and higher differential coeffi-
cients of the density of energy regarded as a function of the density of entropy
and the densities of the several components, which would make the density of
energy a minimum, if the necessary conditions in regard to the first differential
coefficients were fulfilled. When n “ 1, it may be more convenient to regard
m as constant in (145) than v. Regarding m a constant, it appears that the
stability of a phase depends upon the same conditions in regard to the second
and higher differential coefficients of the energy of a unit of mass regarded as a
function of its entropy and volume, which would make the energy a minimum,
if the necessary conditions in regard to the first differential coefficients were
fulfilled.

The formula (144) expresses the condition of stability for the phase to which
t1, p1, etc., relate. But it is evidently the necessary and sufficient condition of
the stability of all phases of certain kinds of matter, or of all phases within given
limits, that (144) shall hold true of any two infinitesimally differing phases
within the same limits, or, as the case may be, in general. For the purpose,
therefore, of such collective determinations of stability, we may neglect the
distinction between the two states compared, and write the condition in the
form

´η∆t ` v∆p ´ m1∆µ1 . . . ´ mn∆µn ą 0, (148)
or

∆p ą
η

v
∆t `

m1

v
∆µ1 . . . `

mn

v
∆µn. (149)

Comparing (98), we see that it is necessary and sufficient for the stability in
regard to continuous changes of all the phases within any given limits, that
within those limits the same conditions should be fulfilled in respect to the
second and higher differential coefficients of the pressure regarded as a function
of the temperature and the several potentials, which would make the pressure
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a minimum, if the necessary conditions with respect to the first differential
coefficients were fulfilled.

By equations (87) and (94), the condition (142) may be brought to the
form

ψ2 ` t2η2 ` p1v2 ´ µ1
1m

2
1 . . . ´ µ1

nm
2
n

´ψ1 ´ t2η2 ´ p1v1 ` µ1
1m

1
1 . . . ` µ1

nm
1
n ą 0.

(150)

For the stability of all phases within any given limits it is necessary and suf-
ficient that within the same limits this condition shall hold true of any two
phases which differ infinitely little. This evidently requires that when v1 “ v2,
m1

1 “ m2
1, . . .m

1
n “ m2

n,

ψ2 ´ ψ1 ` pt2 ´ t1q η2 ą 0 (151)

and that when t1 “ t2

ψ2 ` p1v2 ´ µ1
1m

2
1 . . . ` ´?µ1

nm
2
n

´ψ1 ´ p1v1 ` µ1
1m

1
1 . . . ` µ1

nm
1
n ą 0.

(152)

These conditions may be written in the form

r∆ψ ` η∆tsv,m ă 0, (153)

r∆ψ ` p∆v ´ µ1∆m1 . . . ´ µn∆mnst ą 0, (154)
in which the subscript letters indicate the quantities which are to be regarded as
constant, m standing for all the quantities m1 . . .mn. If these conditions hold
true within any given limits, (150) will also hold true of any two infinitesimally
differing phases within the same limits. To prove this, we will consider a third
phase, determined by the equations

t3 “ t1, (155)
and

v3 “ v2, m3
1 “ m2

1, . . . m
3
n “ m2

n. (156)
Now by (153),

ψ3 ´ ψ2 ` pt3 ´ t2q η2 ă 0; (157)
and by (154),

ψ3 ` p1v3 ´ µ1
1m

3
1 . . . ´ µ1

nm
3
n

´ψ1 ´ p1v1 ` µ1
1m

1
1 . . . ` µ1

nm
1
n ą 0.

(158)

Hence,
ψ2 ` t2η2 ` p1v3 ´ µ1

1m
3
1 ¨ ¨ ¨ ´ µ1

nm
3
n

´ψ1 ´ t3η2 ´ p1v1 ` µ1
1m

1
1 ¨ ¨ ¨ ` µ1

nm
1
n ą 0,

(159)
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which by (155) and (156) is equivalent to (150). Therefore, the conditions
(153) and (154) in respect to the phases within any given limits are necessary
and sufficient for the stability of all the phases within those limits. It will be
observed that in (I53) we have the condition of thermal stability of a body
considered as unchangeable in composition and in volume, and in (154), the
condition of mechanical and chemical stability of the body considered as main-
tained at a constant temperature. Comparing equation (88), we see that the

condition (153) will be satisfied, if d
2ψ

dt2
ă 0, i.e, if dη

dt
or tdη

dt
(the specific heat

for constant volume) is positive. When n “ 1, i.e., when the composition of
the body is invarisble, the condition (154) will evidently not be altered, if we
regard m as constant, by which the condition will be reduced to

r∆ψ ` p∆vst,m ą 0. (160)

This condition will evidently be satisfied if d2ψ

dv2
ą 0, i.e, if ´

dp

dv
or ´v

dp

dv
(the

elasticity for constant temperature) is positive. But when n ą 1, (154) may
be abbreviated more symmetrically by making v constant.

Again, by (91) and (96), the condition (142) may be brought to the form

ζ2 ` t2η2 ´ p2v2 ´ µ1
1m

2
1 . . . ´ µ1

nm
2
n

´ζ 1 ´ t1η2 ` p1v2 ` µ1
1m

1
1 . . . ` µ1

nm
1
n ą 0.

(161)

Therefore, for the stability of all phases within any given limits it is necessary
and sufficient that within the same limits

r∆ζ ` η∆t ´ v∆psm ă 0, (162)

and
r∆ζ ´ µ1∆m1 . . . ´ µn∆mnst,p ą 0. (163)

as may easily be proved by the method used with (153) and (154). The first of
these formula expresses the thermal and mechanical conditions of stability for
a body considered as unchangeable in composition, and the second the condi-
tions of chemical stability for a body considered as maintained at a constant
temperature and pressure. If n “ 1, the second condition falls away, and as in
this case ζ “ mµ, condition (162) becomes identical with (148).

The foregoing discussion will serve to illustrate the relation of the general
condition of stability in regard to continuous changes to some of the principal
forms of fundamental equations. It is evident that each of the conditions (146),
(149), (154), (162), (163) involves in general several particular conditions of
stability. We will now give our attention to the latter. Let

Φ “ ε ´ t1η ` p1v ´ µ1
1m1 . . . ´ µ1

nmn, (164)

the accented letters referring to one phase and the unaccented to another. It
is by (142) the necessary and sufficient condition of the stability of the first
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phase that, for constant values of the quantities relating to that phase and of
v, the value of Φ shall be a minimum when the second phase is identical with
the first. Differentiating (164), we have by (86)

dΦ “ pt ´ t1q dη ´ pp ´ p1q dv ` pµ1 ´ µ1q dm1 . . . ` pµn ´ µ1
nq dmn (165)

Therefore, the above condition requires that if we regard v,m1, . . .mn as having
the constant values indicated by accenting these letters, t shall be an increasing
function of η, when the variable phase differs sufficiently little from the fixed.
But as the fixed phase may be any one within the limits of stability, t must
be an increasing function of η (within these limits) for any constant values of
v,m1, . . .mn. This condition may be written

ˆ

∆t

∆η

˙

v,m1,...mn

ą 0. (166)

When this condition is satisfied, the value of Φ, for any given values of v,m1,
. . .mn, will be a minimum when t “ t1. And therefore, in applying the general
condition of stability relating to the value of Φ, we need only consider the
phases for which t “ t1.

We see again by (165) that the general condition requires that if we regard
t, v,m2, . . .mn as having the constant values indicated by accenting these
letters, µ1 shall be an increasing function of m1, when the variable phase
differs sufficiently little from the fixed. But as the fixed phase may be any one
within the limits of stability, µ1 must be an increasing function of m1 (within
these limits) for any constant values of t, v,m2, . . .mn. That is,

ˆ

∆µ1

∆m1

˙

t,v,m2,...mn

ą 0. (167)

When this condition is satisfied, as well as (166), Φ will have a minimum value,
for any constant values of v,m2, . . .mn when t “ t1 and µ1 “ µ1

1; so that in
spplying the general condition of stability we need only consider the phases
for which t “ t1 and µ1 “ µ1

1.
In this way we may also obtain the following particular conditions of sta-

bility :
ˆ

∆µ2

∆m2

˙

t,v,µ1,m3,...,mn

ą 0, (168)

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

ˆ

∆µn
∆mn

˙

t,v,µ1,...,µn´1

ą 0. (169)
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When the n ` 1 conditions (166)-(169) are all satisfied, the value of Φ, for
any constant value of v, will be a minimum when the temperature and the po-
tentials of the variable phase are equal to those of the fixed. The pressures will
then also be equal and the phases will be entirely identical. Hence, the general
condition of stability will be completely satisfied, when the above particular
conditions are satisfied.

From the manner in which these particular conditions have been derived, it
is evident that we may interchange in them η,m1, . . .mn in any way, provided
that we also interchange in the same way t, µ1, . . . µn. In this way we may
obtain different sets of n ` 1 conditions which are necessary and sufficient for
stability. The quantity v might be included in the first of these lists, and ´p
in the second, except in cases when, in some of the phases considered, the
entropy or the quantity of one of the components has the value zero. Then
the condition that that quantity shall be constant would create a restriction
upon the variations of the phase, and cannot be substituted for the condition
that the volume shall be constant in the statement of the general condition of
stability relative to the minimum value of Φ.

To indicate more distinctly all these particular conditions at once. we ob-
serve that the condition (144), and therefore also the condition obtained by
interchanging the single and double accents, must hold true of any two in-
finitesimally differing phases within the limits of stability. Combining these
two conditions we have

pt2 ´ t1q pη2 ´ η1q ´ pp2 ´ p1q pv2 ´ v1q

` pµ2
1 ´ µ1

1q pm2
1 ´ m1

1q . . . pµ
2
n ´ µ1

nq pm2
n ´ m1

nq ą 0,
(170)

which may be written more briefly

∆t∆η ´ ∆p∆v ` ∆µ1∆m1 ¨ ¨ ¨ ` ∆µn∆mn ą 0. (171)

This must hold true of any two infinitesimally differing phases within the limits
of stability. If, then, we give the value zero to one of the differences in every
term except one, but not so as to make the phases completely identical, the
values of the two differences in the remaining term will have the same sign,
except in the case of ∆p and ∆v, which will have opposite signs. (If both
states are stable this will hold true even on the limits of stability.) Therefore,
within the limits of stability, either of the two quantities occurring (after the
sign ∆ ) in any term of (171) is an increasing function of the other,except p
and v, of which the opposite is true, —when we regard as constant one of the
quantities occurring in each of the other terms, but not such as to make the
phases identical.

If we write d for ∆ in (166)-(169), we obtain conditions which are always
sufficient for stability. If we also substitute ŕ for ą, we obtain conditions which
are necessary for stability. Let us consider the form which these conditions
will take when η, v,m1, . . .mn are regarded as independent variables. When
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dv “ 0, we shall have

dt “
dt

dη
dη `

dt

dm1

dm1 . . . `
dt

dmn

dmn

dµ1 “
dµ1

dη
dη `

dµ1

dm1

dm1 . . . `
dµn
dmn

dmn

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

dµn “
dµn
dη

dη `
dµn
dm1

dm2 . . . `
dµn
dmn

dmn

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

. (172)

Let us write Rn`1 for the determinant of the order n ` 1 :
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d2ε

dη2
d2ε

dm1dη
¨ ¨ ¨

d2ε

dmndη
d2ε

dηdm1

d2ε

dm2
1

¨ ¨ ¨
d2ε

dmndm1

¨ ¨ ¨ ¨ ¨ ¨

d2ε

dηdmn

d2ε

dm1dmn

¨ ¨ ¨
d2ε

dm2
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(173)

of which the constituents are by (86) the same as the coefficients in equations
(172), and Rn, Rn´1, etc., for the minors obtained by erasing the last column
and row in the original determinant and in the minors successively obtained,
and R1 for the last remaining constituent. Then if dt, dµ1, . . . dµn´1, and dv
all have the value zero, we have by (172)

Rndµn “ Rn`1dmn (174)

that is,
ˆ

dµn
dmn

˙

t,v,µ1,...µn´1

“
Rn`1

Rn

. (175)

In like manner we obtain
ˆ

dµn´1

dmn´1

˙

t,v,µ1,...µn´2,mn

“
Rn

Rn´1

,

etc.

,

/

.

/

-

(176)

Therefore, the conditions obtained by writing d for ∆ in (166)-(169) are
equivalent to this, that the determinant given above with the nminors obtained
from it as above mentioned and the last remaining constituent d2ε

dη2
shall all

be positive. Any phase for which this condition is satisfied will be stable, and
no phase will be stable for which any of these quantities has a negative value.
But the conditions (166)-(169) will remain valid, if we interchange in any
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way η,m1, . . .mn (with corresponding interchange of t, µ1, . . . µn ). Hence the
order in which we erase successive columns with the corresponding rows in the
determinant is immaterial. Therefore none of the minors of the determinant
(173) which are formed by erasing corresponding rows and columns, and none
of the constituents of the principal diagonal, can be negative for a stable phase.

We will now consider the conditions which characterize the limits of stability
(i.e., the limits which divide stable from unstable phases) with respect to
continuous changes.∗ Here, evidently, one of the conditions (166)-(169) must
cease to hold true. Therefore, one of the differential coefficients formed by
changing ∆ into d in the first members of these conditions must have the value
zero. (That it is the numerator and not the denominator in the differential
coefficient which vanishes at the limit appears from the consideration that the
denominator is in each case the differential of a quantity which is necessarily
capable of progressive variation, so long at least as the phase is capable of
variation at all under the conditions expressed by the subscript letters.) The
same will hold true of the set of differential coefficients obtained from these
by interchanging in any way η,m1, . . .mn, and simultaneously interchanging
t, µ1, . . . µn in the same way. But we may obtain a more definite result than
this.

Let us give to η or t, to m1 or µ1, . . . to mn´1 or µn´1, and to v, the constant
values indicated by these letters when accented. Then by (165)

dΦ “ pµn ´ µ1
nq dmn (177)

Now
µn ´ µ1

n “

ˆ

dµn
dmn

˙1

pmn ´ m1
nq (178)

approximately, the differential coefficient being interpreted in accordance with
the above assignment of constant values to certain variables, and its value
being determined for the phase to which the accented letters refer. Therefore,

dΦ “

ˆ

dµn
dmn

˙1

pmn ´ m1
nq dmn (179)

and
Φ “ ˘

ˆ

dµn
dmn

˙1

pmn ´ m1
nq

2
. (180)

The quantities neglected in the last equation are evidently of the same
order as pmn ´ m1

nq
3. Now this value of Φ will of course be different (the

differential coefficient having a different meaning) according as we have made
η or t constant, and according as we have made m1 or µ1 constant, etc.; but
since, within the limits of stability. the value of Φ, for any constant values of

∗ The limits of stability with respect to discontinuous changes are formed by phases which are coexistent
with other phases. Some of the properties of such phases have already been considered. See pages 43—48.
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mn and v, will be the least when t, p, µ1, . . . µn´1 have the values indicated by
accenting these letters, the value of the differential coefficient will be at least
as small when we give these variables these constant values, as when we adopt
any other of the suppositions mentioned above in regard to the quantities
remaining constant. And in all these relations we may interchange in any way
η,m1, . . .mn if we interchange in the same way t, µ1, . . . µn. It follows that,
within the limits of stability, when we choose for any one of the differential
coefficients

dt

dη
,

dµ1

dm1

, . . . ,
dµn
dmn

(181)

the quantities following the sign d in the numerators of the others together
with v as those which are to remain constant in differentiation, the value of
the differential coefficient as thus determined will be at least as small as when
one or more of the constants in differentiation are taken from the denominators,
one being still taken from each fraction, and v as before being constant.

Now we have seen that none of these differential coefficients, as determined
in any of these ways, can have a negative value within the limit of stability, and
that some of them must have the value zero at that limit. Therefore in virtue
of the relations just established, one at least of these differential coefficients
determined by considering constant the quantities occurring in the numerators
of the others together with v, will have the value zero. But if one such has the
value zero, all such will in general have the same value. For if

ˆ

dµn
dmn

˙

t,v,µ1...µn´1

(182)

for example, has the value zero, we may change the density of the component
Sn without altering (if we disregard infinitesimals of higher orders than the
first) the temperature or the potentials, and therefore, by (98), without alter-
ing the pressure. That is, we may change the phase without altering any of
the quantities t, p, µ1, . . . µn. (In other words, the phases adjacent to the limits
of stability exhibit approximately the relations characteristic of neutral equi-
librium.) Now this change of phase, which changes the density of one of the
components, will in general change the density of the others and the density
of entropy. Therefore, all the other differential coefficients formed after the
analogy of (182), i.e., formed from the fractions in (181) by taking as constants
for each the quantities in the numerators of the others together with v, will in
general have the value zero at the limit of stability. And the relation which
characterizes the limit of stability may be expressed, in general, by setting any
one of these differential coefficients equal to zero. Such an equation, when the
fundamental equation is known, may be reduced to the form of an equation
between the independent variables of the fundamental equation.

Again, as the determinant (173) is equal to the product of the differential
coefficients obtained by writing d for ∆ in the first members of (166)-(169), the
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equation of the limit of stability may be expressed by setting this determinant
equal to zero. The form of the differential equation as thus expressed will not
be altered by the interchange of the expressions η,m1, . . .mn, but it will be
altered by the substitution of v for any one of these expressions, which will be
allowable whenever the quantity for which it is substituted has not the value
zero in any of the phases to which the formula is to be applied.

The condition formed by setting the expression (182) equal to zero is evi-
dently equivalent to this, that

»

–

dµn

d
mn

v

fi

fl

t,µ1,...,µn´1

“ 0, (183)

that is, that
»

–

d
mn

v
dµn

fi

fl

t,µ1,...,µn´1

“ 8 : (184)

or by (98), if we regard t, µ1, . . . µn as the independent variables,
ˆ

d2p

dµ2
n

˙

“ 8. (185)

In like manner we may obtain

d2p

dt2
“ 8,

d2p

dµ2
1

“ 8, . . .
d2p

dµ2
n´1

“ 8. (186)

Any one of these equations, (185), (186), may be regarded, in general, as the
equation of the limit of stability. We may be certain that at every phase at
that limit one at least of these equations will bold true.
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Geometrical Illustrations.

Surfaces in which the Composition of the Body repre-
sented is Constant.

In vol. ii, p. 382, of the Trans. Conn. Acad., a method is described of repre-
senting the thermodynamic properties of substances of invariable composition
by means of surfaces. The volume, entropy, and energy of a constant quantity
of a substance are represented by rectangular co-ordinates. This method cor-
responds to the first kind of fundamental equation described on pages 30—35.
Any other kind of fundamental equation for a substance of invariable com-
position will suggest an analogous geometrical method. Thus, if we make m
constant, the variables in any one of the sets (99)-(103) are reduced to three,
which may be represented by rectangular co-ordinates. This will, however,
afford but four different methods, for, as has already (page 41) been observed,
the two last sets are essentially equivalent when n “ 1.

The method described in the preceding volume has certain advantages,
especially for the purposes of theoretical discussion, but it may often be more
advantageous to select a method in which the properties represented by two
of the co-ordinates shall be such as best serve to identify and describe the
different states of the substance. This condition is satisfied by temperature
and pressure as well, perhaps, as by any other properties. We may represent
these by two of the co-ordinates and the potential by the third. (See page 34.)
It will not be overlooked that there is the closest analogy between these three
quantities in respect to their parts in the general theory of equilibrium. (A
similar analogy exists between volume, entropy, and energy.) If we give m the
constant value unity, the third co-ordinate will also represent ζ, which then
becomes equal to µ.

Comparing the two methods, we observe that in one

v “ x, η “ y, ε “ z, (187)

p “ ´
dz

dx
, t “

dz

dy
, µ “ ζ “ z ´

dz

dx
x ´

dz

dy
y; (188)

and in the other
t “ x, p “ y, µ “ ζ “ z, (189)
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η “ ´
dz

dx
, y “

dz

dy
, ε “ z ´

dz

dx
x ´

dz

dy
y. (190)

Now dz

dx
and dz

dy
are evidently determined by the inclination of the tangent

plane, and z ´
dz

dx
x ´

dz

dy
y is the segment which it cuts off on the axis of Z.

The two methods, therefore, have this reciprocal relation, that the quantities
represented in one by the position of a point in a surface are represented in
the other by the position of a tangent plane.

The surfaces defined by equations (187) and (189) may be distinguished as
the v-η-ε surface, and the t-p-ζ surface, of the substance to which they relate.

In the t-p-ζ surface a line in which one part of the surface cuts another rep-
resents s series of pairs of coexistent states. A point through which pass three
different parts of the surface represents a triad of coexistent states. Through
such a point will evidently pass the three lines formed by the intersection of
these sheets taken two by two. The perpendicular projection of these lines
upon the p-t plane will give the curves which have recently been discussed by
Professor J. Thomson.∗ These curves divide the space about the projection
of the triple point into six parts which may be distinguished as follows: Let
ζpV q, ζpLq, ζpSq denote the three ordinates determined for the same values of p
and t by the three sheets passing through the triple point, then in one of the
six spaces

ζpV q ă ζpLq ă ζpSq. (191)
in the next space, separated from the former by the line for which ζpLq “ ζpSq,

ζpV q ă ζpSq ă ζpLq, (192)

in the third space, separated from the last by the line for which ζpV q “ ζpSq,

ζpSq ă ζpV q ă ζpLq.

in the fourth ζpSq ă ζpLq ă ζpV q.

in the fifth ζpLq ă ζpSq ă ζpV q.

in the sixth ζpLq ă ζpV q ă ζpSq.

The sheet which gives the least values of ζ is in each case that which represents
the stable states of the substance. From this it is evident that in passing
around the projection of the triple point we pass through lines representing
alternately coexistent stable and coexistent unstable states. But the states
represented by the intermediate values of ζ may be called stable relatively
to the states represented by the highest. The differences ζpLq ´ ζpV q, etc.
represent the amount of work obtained in bringing the substance by a reversible

∗ See the Reports of the British association for 1871 and 1872; and Philosophical Magazine, vol. xlvii.
(1874), p. 447.
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process from one to the other of the states to which these quantities relate,
in a medium having the temperature and pressure common to the two states.
To illustrate such a process, we may suppose a plane perpendicular to the
axis of temperature to pass through the points representing the two states.
This will in general cut the double line formed by the two sheets to which the
symbols pLq and pV q refer. The intersections of the plane with the two sheets
will connect the double point thus determined with the points representing the
initial and final states of the process, and thus form a reversible path for the
body between those states.

The geometrical relations which indicate the stability of any state may be
easily obtained by applying the principles stated on pp. 48 ff to the case
in which there is but a single component. The expression (133) as a test of
stability will reduce to

ε ´ t1η ` p1v ´ µ1m (197)
the accented letters referring to the state of which the stability is in question,
and the unaccented letters to any other state. If we consider the quantity of
matter in each state to be unity, this expression may be reduced by equations
(91) and (96) to the form

ζ ´ ζ 1 ` pt ´ t1q η ´ pp ´ p1q v, (198)

which evidently denotes the distance of the point pt1, p1, ζ 1q below the tangent
plane for the point pt, p, ζq, measured parallel to the axis of ζ. Hence if the
tangent plane for every other state passes above the point representing any
given state, the latter will be stable. If any of the tangent planes pass below
the point representing the given state, that state will be unstable. Yet it is not
always necessary to consider these tangent planes. For, as has been observed
on page 50, we may assume that (in the case of any real substance) there will
be at least one not unstable state for any given temperature and pressure,
except when the latter is negative. Therefore the state represented by a point
in the surface on the positive side of the plane p “ 0 will be unstable only
when there is a point in the surface for which t and p have the same values
and ζ a less value. It follows from what has been stated, that where the surface
is doubly convex upwards (in the direction in which ζ is measured) the states
represented will be stable in respect to adjacent states. This also appears
directly from (162). But where the surface is concave upwards in either of
its principal curvatures the states represented will be unstable in respect to
adjacent states.

When the number of component substances is greater than unity, it is not
possible to represent the fundamental equation by a single surface. We have
therefore to consider how it may be represented by an infinite number of sur-
faces. A natural extension of either of the methods already described will give
us a series of surfaces in which every one is the v-η-ε surface, or every one
the t-p-ζ surface for a body of constant composition, the proportion of the
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components varying as we pass from one surface to another. But for a simul-
taneous view of the properties which are exhibited by compounds of two or
three components without change of temperature or pressure, we may more
advantageously make one or both of the quantities t or p constant in each
surface.

Surfaces and Curves in which the Composition of the
Body represented is Variable and its Temperature and
Pressure are Constant.

When there are three components, the position of a point in the X-Y plane
may indicate the composition of a body most simply, perhaps, as follows. The
body is supposed to be composed of the quantities m1,m2,m3 of the substances
S1, S2, S3, the value of m1 `m2 `m3 being unity. Let P1,P2,P3 be any three
points in the plane, which are not in the same straight line. If we suppose
masses equal to m1,m2,m3 to be placed at these three points, the center of
gravity of these masses will determine a point which will indicate the value
of these quantities. If the triangle is equiangular and has the height unity,
the distances of the point from the three sides will be equal numerically to
m1,m2,m3. Now if for every possible phase of the components, of a given
temperature and pressure, we lay off from the point in the X-Y plane which
represents the composition of the phase a distance measured parallel to the
axis of Z and representing the value of ζ (when m1 ` m2 ` m3 “ 1 ), the
points thus determined will form a surface, which may be designated as the
m1 ´m2 ´m3 ´ ζ surface of the substances considered, or simply as their m-ζ
surface, for the given temperature and pressure. In like manner, when there are
but two component substances, we may obtain a curve, which we will suppose
in the X ´ Z plane. The coordinate y may then represent temperature or
pressure. But we will limit ourselves to the consideration of the properties of
the m´ζ surface for n “ 3 or the m´ζ curve for n “ 2, regarded as a surface,
or curve, which varies with the temperature and pressure.

As by (96) and (92)

ζ “ µ1m1 ` µ2m2 ` µ3m3

and (for constant temperature and pressure)

dζ “ µ1dm1 ` µ2dm2 ` µ3dm3,

if we imagine a tangent plane for the point to which these letters relate, and
denote by ζ the ordinate for any point in the plane, and by m1

1,m
1
2,m

1
3, the

distances of the foot of this ordinate from the three sides of the triangle P1P2P2

we may easily obtain

ζ 1 “ µ1m
1
1 ` µ2m

1
2 ` µ3m

1
3, (199)
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which we may regard as the equation of the tangent plane. Therefore the
ordinates for this plane at P1,P2 and P3 are equal respectively to the potentials
µ1, µ2, µ3. And in general, the ordinate for any point in the tangent plane
is equal to the potential (in the phase represented by the point of contact)
for a substance of which the composition is indicated by the position of the
ordinate. (See page 40.) Among the bodies which may be formed of S1, S2,
and S3, there may be some which are incapable of variation in composition, or
which are capable only of a single kind of variation. These will be represented
by single points and curves in vertical planes. Of the tangent plane to one of
these curves only a single line will be fixed, which will determine a series of
potentials of which only two will be independent. The phase represented by a
separate point will determine only a single potential, viz. the potential for the
substance of the body itself, which will be equal to ζ.

The points representing a set of coexistent phases have in general a common
tangent plane. But when one of these points is situated on the edge where a
sheet of the surface terminates, it is sufficient if the plane is tangent to the
edge and passes below the surface. Or, when the point is at the end of a
separate line belonging to the surface, or at an angle in the edge of a sheet, it
is sufficient if the plane pass through the point and below the line or sheet. If
no part of the surface lies below the tangent plane, the points where it meets
the plane will represent a stable (or at least not unstable) set of coexistent
phases.

The surface which we have considered represents the relation between ζ and
m1,m2,m3 for homogeneous bodies when t and p have any constant values
and m1 ` m2 ` m3 “ 1. It will often be useful to consider the surface which
represents the relation between the same variables for bodies which consist
of parts in different but coexistent phases. We may suppose that these are
stable, at least in regard to adjacent phases, as otherwise the case would be
devoid of interest. The point which represents the state of the composite body
will evidently be at the center of gravity of masses equal to the parts of the
body placed at the points representing the phases of these parts. Hence from
the surface representing the properties of homogeneous bodies, which may be
called the primitive surface, we may easily construct the surface representing
the properties of bodies which are in equilibrium but not homogeneous. This
may be called the secondary or derived surface. It will consist, in general, of
various portions or sheets. The sheets which represent a combination of two
phases may be formed by rolling a double tangent plane upon the primitive
surface; the part of the envelop of its successive positions which lies between
the curves traced by the points of contact will belong to the derived surface.
When the primitive surface has a triple tangent plane or one of higher order,
the triangle in the tangent plane formed by joining the points of contact, or
the smallest polygon without re-entrant angles which includes all the points of
contact, will belong to the derived surface, and will represent masses consisting
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in general of three or more phases.
Of the whole thermodynamic surface as thus constructed for any tempera-

ture and any positive pressure, that part is especially important which gives
the least value of ζ for any given values of m1,m2,m3 The state of a mass
represented by a point in this part of the surface is one in which no dissipa-
tion of energy would be possible if the mass were enclosed in a rigid envelop
impermeable both to matter and to heat; and the state of any mass composed
of S1, S2, S3 in any proportions, in which the dissipation of energy has been
completed, so far as internal processes are concerned (i.e., under the limita-
tions imposed by such an envelop as above supposed), would be represented
by a point in the part which we are considering of the m-ζ surface for the
temperature and pressure of the mass. We may therefore briefly distinguish
this part of the surface as the surface of dissipated energy. It is evident that
it forms a continuous sheet, the projection of which upon the X-Y plane coin-
cides with the triangle P1P2P3, (except when the pressure for which the m-ζ
surface is constructed is negative, in which case there is no surface of dissipated
energy), that it nowhere has any convexity upward, and that the states which
it represents are in no case unstable.

The general properties of the m-ζ lines for two component substances are so
similar as not to require separate consideration. We now proceed to illustrate
the use of both the surfaces and the lines by the discussion of several particular
cases.

Three coexistent phases of two component substances may be represented
by the points A,B, and C, in figure 1, in which ζ is measured toward the top
of the page from P1P2, m1 toward the left from P2Q2, and m2 toward the right
from P1Q1. It is supposed that P1P2 “ 1. Portions of the curves to which
these points belong are seen in the figure, and will be denoted by the symbols
(A), (B), (C). We may, for convenience, speak of these as separate curves,
without implying anything in regard to their possible continuity in parts of the
diagram remote from their common tangent AC. The line of dissipated energy
includes the straight line AC and portions of the primitive curves (A) and
(C). Let us first consider how the diagram will be altered, if the temperature

is varied while the pressure remains con-
stant. If the temperature receives the in-
crement dt, an ordinate of which the po-
sition is fixed will receive the increment
ˆ

dζ

dt

˙

p,m

dt, or ´ηdt. (The reader will

easily convince himself that this is true of
the ordinates for the secondary line AC,
as well as of the ordinates for the primi-
tive curves.) Now if we denote by η1 the
entropy of the phase represented by the

point B considered as belonging to the curve (B), and by η2 the entropy of the
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composite state of the same matter represented by the point B considered as
belonging to the tangent to the curves (A) and (C), t pη1 ´ η2q will denote the
heat yielded by a unit of matter in passing from the first to the second of these
states. If this quantity is positive, an elevation of temperature will evidently
cause a part of the curve (B) to protrude below the tangent to (A) and (C),
which will no longer form a part of the line of dissipated energy. This line will
then include portions of the three curves (A), (B), and (C), and of the tan-
gents to (A) and (B) and to (B) and (C). On the other hand, a lowering of the
temperature will cause the curve (B) to lie entirely above the tangent to (A)
and (C), so that all the phases of the sort represented by (B) will be unstable.
If t pη1 ´ η2q is negative, these effects will be produced by the opposite changes
of temperature.

The effect of a change of pressure while the temperature remains constant
may be found in a manner entirely analogous. The variation of any ordinate
will be

ˆ

dζ

dp

˙

t,m

dp or vdp. Therefore, if the volume of the homogeneous phase

represented by the point B is greater than the volume of the same matter
divided between the phases represented by A and C, an increase of pressure
will give a diagram indicating that all phases of the sort represented by curve
(B) are unstable, and a decrease of pressure will give a diagram indicating
two stable pairs of coexistent phases, in each of which one of the phases is
of the sort represented by the curve (B). When the relation of the volumes is
the reverse of that supposed, these results will be produced by the opposite
changes of pressure.

When we have four coexistent phases of three component substances, there
are two cases which must be distinguished. In the first, one of the points of
contact of the primitive surface with the quadruple tangent plane lies within
the triangle formed by joining the other three: in the second, the four points
may be joined so as to form a quadrilateral without re-entrant angles. Figure
2 represents the projection upon the X-F plane (in which m1,m2,m3 are
measured) of a part of the surface of dissipated energy, when one of the points
of contact D falls within the triangle formed by the other three A, B, C This
surface includes the triangle ABC in the quadruple tangent plane, portions of
the three sheets of the primitive surface which touch the triangle at its vertices,
EAF, GBH, ICK, and portions of the three developable surfaces formed by
a tangent plane rolling upon each pair of these sheets. These developable
surfaces are represented in the figure by ruled surfaces, the lines indicating
the direction of their rectilinear elements. A point within the triangle ABC
represents a mass of which the matter is divided, in general, between three
or four different phases, in a manner not entirely determined by the position
of a point. (The quantities of matter in these phases are such that if placed
at the corresponding points, A, B, C, D, their center of gravity would be at
the point representing the total mass.) Such a mass, if exposed to constant
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temperature and pressure, would be in neutral equilibrium. A point in the
developable surfaces represents a mass of which the matter is divided between
two coexisting phases, which are represented by the extremities of the line
in the figure passing through that point. A point in the primitive surface
represents of course a homogeneous mass.

To determine the effect of a change of temperature without change of pres-
sure upon the general features of the surface of dissipated energy, we must
know whether heat is absorbed or yielded by a mass in passing from the phase
represented by the point D in the primitive surface to the composite state
consisting of the phases A, B, and C which is represented by the same point.
If the first is the case, an increase of temperature will cause the sheet (D) (i.e.,
the sheet of the primitive surface to which the point D belongs) to separate
from the plane tangent to the three other sheets, so as to be situated entirely
above it, and a decrease of temperature, will cause a part of the sheet (D) to
protrude through the plane tangent to the other sheets. These effects will be
produced by the opposite changes of temperature, when heat is yielded by a
mass passing from the homogeneous to the composite state above mentioned.

In like manner, to determine the effect of a variation of pressure without
change of temperature, we must know whether the volume for the homogeneous
phase represented by D is greater or less than the volume of the same matter
divided between the phases A, B, and C. If the homogeneous phase has the
greater volume, an increase of pressure will cause the sheet (D) to separate
from the plane tangent to the other sheets, and a diminution of pressure will
cause a part of the sheet pDq to protrude below that tangent plane. And these
effects will be produced by the opposite changes of pressure, if the homogeneous
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phase has the less volume. All this appears from precisely Fig. 2. Fig. 3. the
same considerations which were used in the analogous case for two component
substances.

Now when the sheet (D) rises above the plane tangent to the other sheets,
the general features of the surface of dissipated energy are not altered, except
by the disappearance of the point D. But when the sheet (D) protrudes below
the plane tangent to the other sheets, the surface of dissipated energy will
take the form indicated in figure 3. It will include portions of the four sheets
of the primitive surface, portions of the six developable surfaces formed by a
double tangent plane rolling upon these sheets taken two by two, and portions
of three triple tangent planes for these sheets taken by threes, the sheet (D)
being always one of the three.

But when the points of contact with the quadruple tangent plane which
represent the four coexistent phases can be joined so as to form a quadrilateral
ABCD (fig. 4) without reentrant angles, the surface of dissipated energy will
include this plane quadrilateral, portions of the four sheets of the primitive
surface which are tangent to it, and portions of the four developable surfaces
formed by double tangent planes rolling upon the four pairs of these sheets

which correspond to the four sides of the quadrilateral. To determine the
general effect of a variation of temperature upon the surface of dissipated
energy, let us consider the composite states represented by the point I at the
intersection of the diagonals of the quadrilateral. Among these states (which all
relate to the same kind and quantity of matter) there is one which is composed
of the phases A and C, and another which is composed of the phases B and D.
Now if the entropy of the first of these states is greater than that of the second
(i.e., if heat is given out by a body in passing from the first to the second state
at constant temperature and pressure), which we may suppose without loss
of generality, an elevation of temperature while the pressure remains constant
will cause the triple tangent planes to (B), (D), and (A), and to (B), (D), and
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(C), to rise above the triple tangent planes to (A), (C), and (B), and to (A),
(C), and (D), in the vicinity of the point I. The surface of dissipated energy
will therefore take the form indicated in figure 5, in which there are two plane
triangles and five developable surfaces besides portions of the four primitive
sheets. A diminution of temperature will give a different but entirely analogous
form to the surface of dissipated energy. The quadrilateral ABCD will in this
case break into two triangles along the diameter BD. The effects produced by
variation of the pressure while the temperature remains constant will of course
be similar to those described. By considering the difference of volume instead
of the difference of entropy of the two states represented by the point I in the
quadruple tangent plane, we may distinguish between the effects of increase
and diminution of pressure.

It should be observed that the points of contact of the quadruple tangent
plane with the primitive surface may be at isolated points or curves belonging
to the latter. So also, in the case of two component substances, the points of
contact of the triple tangent line may be at isolated points belonging to the
primitive curve. Such cases need not be separately treated, as the necessary
modifications in the preceding statements, when applied to such cases, are
quite evident. And in the remaining discussion of this geometrical method,
it will generally be left to the reader to make the necessary limitations or
modifications in analogous cases.

The necessary condition in regard to simultaneous variations of temperature
and pressure, in order that four coexistent phases of three components, or three
coexistent phases of two components, shall remain possible, has already been
deduced by purely analytical processes. (See equation (129).)

We will next consider the case of two coexistent phases of identical com-
position, and first, when the number of components is two. The coexistent
phases, if each is variable in composition, will be represented by the point
of contact of two curves. One of the curves will in general lie above the
other except at the point of contact, therefore, when the temperature and
pressure remain constant, one phase cannot be varied in composition without
becoming unstable, while the other phase will be stable if the proportion of
either component is increased. By varying the temperature or pressure, we
may cause the upper curve to protrude below the other, or to rise (relatively)
entirely above it. (By comparing the volumes or the entropies of the two
coexistent phases, we may easily determine which result would be produced
by an increase of temperature or of pressure.) Hence, the temperatures and
pressures for which two coexistent phases have the same composition form
the limit to the temperatures and pressures for which such coexistent phases
are possible. It will be observed that as we pass this limit of temperature
and pressure, the pair of coexistent phases does not simply become unsta-
ble, like pairs and triads of coexistent phases which we have considered be-
fore, but there ceases to be any such pair of coexistent phases. The same
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result has already been obtained analytically on page 46. But on that side
of the limit on which the coexistent phases are possible, there will be two
pairs of coexistent phases for the same values of t and p, as seen in figure 6.
If the curve AA1 represents vapor, and the curve BB1 liquid, a liquid (repre-
sented by) B may exist in contact with a vapor A, and (at the same temper-
ature and pressure) a liquid B1 in contact with a vapor A1. If we compare

these phases in respect to their compo-
sition, we see that in one case the va-
por is richer than the liquid in a cer-
tain component, and in the other case
poorer. Therefore, if these liquids are
made to boil, the effect on their compo-
sition will be opposite. If the boiling is
continued under constant pressure, the
temperature will rise as the liquids ap-

proach each other in composition, and the curve BB1 will rise relatively to the
curve AA1, until the curves are tangent to each other, when the two liquids
become identical in nature, is also the vapors which they yield. In composi-
tion, and in the value of ζ per unit of mass, the vapor will then agree with
the liquid. But if the curve BB1 (which has the greater curvature) represents
vapor, and AA1 represents liquid, the effect of boiling will make the liquids A
and A1 differ more in composition. In this case, the relations indicated in the
figure will hold for a temperature higher than that for which (with the same
pressure) the curves are tangent to one another.

When two coexistent phases of three component substances have the same
composition, they are represented by the point of contact of two sheets of the
primitive surface. If these sheets do not intersect at the point of contact, the
case is very similar to that which we have just considered. The upper sheet
except at the point of contact represents unstable phases. If the temperature
or pressure are so varied that a part of the upper sheet protrudes through
the lower, the points of contact of a double tangent plane rolling upon the
two sheets will describe a closed curve on each, and the surface of dissipated
energy will include a portion of each sheet of the primitive surface united by
a ring-shaped developable surface.

If the sheet having the greater curvatures represents liquid, and the other
sheet vapor, the boiling temperature for any given pressure will be a maxi-
mum, and the pressure of saturated vapor for any given temperature will be a
minimum, when the coexistent liquid and vapor have the same composition.

But if the two sheets, constructed for the temperature and pressure of the
coexistent phases which have the same composition, intersect at the point
of contact, the whole primitive surface as seen from below will in general
present four re-entrant furrows, radiating from the point of contact, for each
of which a developable surface may be formed by a rolling double tangent
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plane. The different parts of the surface of dissipated energy in the vicinity of
the point of contact are represented in figure 7. ATB, ETF are parts of one
sheet of the primitive surface, and CTD, GTH are parts of the other. These are
united by the developable surfaces BTC, DTE. FTG, HTA. Now we may make

either sheet of the primitive surface sink
relatively to the other by the proper
variation of temperature or pressure. If
the sheet to which ATB, ETF belong is
that which sinks relatively, these parts
of the surface of dissipated energy will
be merged in one, as well as the de-
velopable surfaces BTC, DTE, and also
FTG, HTA. (The lines CTD, BTE, ATF,
HTG will separate from one another at

T. each forming a continuous curve.) But if the sheet of the primitive sur-
face which sinks relatively is that to which CTD and GTH belong, then these
parts will be merged in one in the surface of dissipated energy, as will be the
derelopable surfaces BTC, ATH, and also DTE, FTG.

It is evident that this is not at case of maximum or minimum temperature
for coexistent phases under constant pressure, or of maximum or minimum
pressure for coexistent phases at constant temperature.

Another case of interest is when the composition of one of three coexis-
tent phases is such us can be produced by combining the other two. In this
case, the primitive surface must touch the same plane in three points in the
same straight line. Let us distinguish the parts of the primitive surface to
which these points belong as the sheets (A), (B), and (C), (C) denoting that
which is intermediate in position. The sheet (C) is evidently tangent to the
developable surface formed upon (A) and (B). It may or it may not intersect
it at the point of contact. If it does not, it must lie above the developable
surface (unless it represents states which are unstable in regard to continuous
changes), and the surface of dissipated energy will include parts of the primi-
tive sheets (A) and (B), the developable surface joining them. and the single
point of the sheet (C) in which it meets this developable surface. Now, if the
temperature or pressure is varied so as to make the sheet (C) rise above the
developable surface formed on the sheets (A) and (B), the surface of dissi-
pated energy will be altered in its general features only by the removal of the
single point of the sheet (C). But if the temperature or pressure is altered so
as to make a part of the sheet (C) protrude through the developable surface

formed on (A) and (B), the surface of
dissipated energy will have the form
indicated in figure 8. It will include
two plane triangles ABC and A1B1C 1,
a part of each of the sheets pAq and
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pBq, represented in the figure by the
spaces on the left of the line aAA1a1

and on the right of the line bBB1b1, a
small part CC1 of the sheet (C), and developable surfaces formed upon these
sheets taken by pairs ACC1A1. BCC1B1, aABb, a1A1B1b1, the last two being
different portions of the same developable surface.

But if, when the primitive surface is constructed for such a temperature
and pressure that it has three points of contact with the same plane in the
same straight line, the sheet (C) (which has the middle position) at its point
of contact with the triple tangent plane intersects the developable surface
formed upon the other sheets (A) and (B), the surface of dissipated energy
will not include this developable surface, but will consist of portions of the
three primitive sheets with two developable surfaces formed on (A) and (C)
and on (B) and (C). These developable surfaces meet one another at the

point of contact of (C) with the triple
tangent plane, dividing the portion of
this sheet which belongs to the surface
of dissipated energy into two parts. If
now the temperature or pressure are
varied so as to make the sheet (C)
sink relatively to the developable sur-
face formed on (A) and (B), the only

alteration in the general features of the surface of dissipated energy will be
that the developable surfaces formed on (A) and (C) and on (B) and (C) will
separate from one another, and the two parts of the sheet (C) will be merged
in one. But a contrary variation of temperature or pressure will give a surface
of dissipated energy such as is represented in figure (9), containing two plane
triangles ABC. A1B1C1 belonging to triple tangent planes, a portion of the
sheet (A) on the left of the line aAA1a1, a portion of the sheet (B) on the right
of the line bBB1b1, two separate portions cCγ and c1C1γ1 of the sheet (C), two
separate portions aACc and a1A1C1c1 of the developable surface formed on (A)
and (C), two separate portions bBCγ and b1B1C1γ1 of the developable surface
formed on (B) and (C), and the portion A1ABB1 of the developable surface
formed on (A) and (B).

From these geometrical relations it appears that (in general) the tempera-
ture of three coexistent phases is a maximum or minimum for constant pres-
sure, and the pressure of three coexistent phases a maximum or minimum for
constant temperature, when the composition of the three coexistent phases is
such that one can be formed by combining the other two. This result has been
obtained analytically on page 46.

The preceding examples are amply sufficient to illustrate the use of the m-ζ
surfaces and curves. The physical properties indicated by the nature of the
surface of dissipated energy have been only occasionally mentioned, as they
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are often far more distinctly indicated by the diagrams than they could be
in words. It will be observed that a knowledge of the lines which divide the
various different portions of the surface of dissipated energy and of the direction
of the rectilinear elements of the developable surfaces, as projected upon the
X-Y plane, without a knowledge of the form of the m-ζ surface in space, is
sufficient for the determination (in respect to the quantity and composition of
the resulting masses) of the combinations and separations of the substances,
and of the changes in their states of aggregation, which take place when the
substances are exposed to the temperature and pressure to which the projected
lines relate, except so far as such transformations are prevented by passive
resistances to change.

Critical Phases.

It has been ascertained by experiment that the variations of two coexistent
states of the same substance are in some cases limited in one direction by a
terminal state at which the distinction of the coexistent states vanishes.∗ This
state has been called the critical state. Analogous properties may doubtless
be exhibited by compounds of variable composition without change of temper-
ature or pressure. For if, at any given temperature and pressure, two liquids
are capable of forming a stable mixture in any ratio m1 : m2 less than a, and
in any greater than b, a and b being the values of that ratio for two coexistent
phases, while either can form a stable mixture with a third liquid in all propor-
tions, and any small quantities of the first and second can unite at once with a
great quantity of the third to form a stable mixture, it may easily be seen that
two coexistent mixtures of the three liquids may be varied in composition, the
temperature and pressure remaining the same, from initial phases in each of
which the quantity of the third liquid is nothing, to a terminal phase in which
the distinction of the two phases vanishes.

In general. we may define a critical phase as one at which the distinction
between coexistent phases vanishes. We may suppose the coexistent phases
to be stable in respect to continuous changes, for although relations in some
respects analogous might be imagined to hold true in regard to phases which
are unstable in respect to continuous changes, the discussion of such cases
would be devoid of interest. But if the coexistent phases and the critical
phase are unstable only in respect to the possible formation of phases entirely
different from the critical and adjacent phases, the liability to such changes will
in no respect affect the relations between the critical and adjacent phases, and
need not be considered in a theoretical discussion of these relations, although
it may prevent an experimental realization of the phases considered. For the
sake of brevity, in the following discussion, phases in the vicinity of the critical

∗ See Dr. Andrews ”On the continuity of the gaseous and liquid states of matter.” Phil. Trans., vol. 159,
p. 575.
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phase will generally be called stable, if they are unstable only in respect to the
formation of phases entirely different from any in the vicinity of the critical
phase.

Let us first consider the number of independent variations of which a critical
phase (while remaining such) is capable. If we denote by n the number of
independently variable components, a pair of coexistent phases will be capable
of n independent variations, which may be expressed by the variations of n
of the quantities t, p, µ1, µ2, . . . µn. If we limit these variations by giving to
n´1 of the quantities the constant values which they have for a certain critical
phase, we obtain a linear ∗ series of pairs of coexistent phases terminated by the
critical phase. If we now vary infinitesimally the values of these n´1 quantities,
we shall have for the new set of values considered constant a new linear series of
pairs of coexistent phases. Now for every pair of phases in the first series, there
must be pairs of phases in the second series differing infinitely little from the
pair in the first, and vice versa, therefore the second series of coexistent phases
must be terminated by a critical phase which differs, but differs infinitely little,
from the first. We see, therefore, that if we vary arbitrarily the values of any
n ´ 1 of the quantities, t, p, µ1, µ2, . . . µn as determined by a critical phase,
we obtain one and only one critical phase for each set of varied values; i.e., a
critical phase is capable of n ´ 1 independent variations.

The quantities t, p, µ1, µ2, . . . µn have the same values in two coexistent
phases, but the ratios of the quantities η, v,m1,m2, . . .mn are in general dif-
ferent in the two phases. Or, if for convenience we compare equal volumes of
the two phases (which involves no less of generality), the quantities η,m1,m2,
. . .mn will in general have different values in two coexistent phases. Applying
this to coexistent phases indefinitely near to a critical phase, we see that in
the immediate vicinity of a critical phase, if the values of n of the quantities
t, p, µ1, µ2, . . . µn are regarded as constant (as well as v ), the variations of ei-
ther of the others will be infinitely small compared with the variations of the
quantities η,m1,m2, . . .mn. This condition, which we may write in the form

ˆ

dµn
dmn

˙

t,v,µ1,...µn´1

“ 0, (200)

characterizes, as we have seen on page 61, the limits which divide stable from
unstable phases in respect to continuous changes.

In fact, if we give to the quantities t, µ1, µ2, . . . µn´1 constant values deter-
mined by a pair of coexistent phases, and to mn

v
a series of values increasing

from the less to the greater of the values which it has in these coexistent phases,
we determine a linear series of phases connecting the coexistent phases, in some
part of which µn—since it has the same value in the two coexistent phases, but
not a uniform value throughout the series (for if it had, which is theoretically

∗ This term is used to characterize a series having a single degree of extension.
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improbable, all these phases would be coexistent) must be a decreasing func-
tion of mn

v
, or of mn, if v also is supposed constant. Therefore, the series must

contain phases which are unstable in respect to continuous changes: (See page
57.) And as such a pair of coexistent phases may be taken indefinitely near to
any critical phase, the unstable phases (with respect to continuous changes)
must approach indefinitely near to this phase.

Critical phases have similar properties with reference to stability as deter-
mined with regard to discontinuous changes. For as every stable phase which
has a coexistent phase lies upon the limit which separates stable from unstable
phases, the same must be true of any stable critical phase. (The same may be
said of critical phases which are unstable in regard to discontinuous changes,
if we leave out of account the liability to the particular kind of discontinuous
change in respect to which the critical phase is unstable.)

The linear series of phases determined by giving to n of the quantities t,
p, µ1, µ2, . . . µn the constant values which they have in any pair of coexistent
phases consists of unstable phases in the part between the coexistent phases,
but in the part beyond these phases in either direction it consists of stable
phases. Hence, if a critical phase is varied in such a manner that n of the
quantities t, p, µ1, µ2, . . . µn remain constant, it will remain stable in respect
both to continuous and to discontinuous changes. Therefore µn is an increasing
function of mn when t, v, µ1, µ2, . . . µn´1 have constant values determined by
any critical phase. But as equation (200) holds true at the critical phase, the
following conditions must also hold true at that phase:-

ˆ

d2µn
dm2

n

˙

t,v,µ1,...µn´1

“ 0, (201)

ˆ

d3µn
dm3

n

˙

t,v,µ1,...,µn´1

ŕ 0. (202)

If the sign of equality holds in the last condition. additional conditions, con-
cerning the differential coefficients of higher orders, must be satisfied.

Equations (200) and (201) may in general be called the equations of critical
phases. It is evident that there are only two independent equations of this
character, as a critical phase is capable of n ´ 1 independent variations.

We are not, however, absolutely certain that equation (200) will always be
satisfied by a critical phase. For it is possible that the denominator in the
fraction may vanish as well as the numerator for an infinitesimal change of
phase in which the quantities indicated are constant. In such a case, we may
suppose the subscript n to refer to some different component substance, or use
another differential coefficient of the same general form (such as are described
on page 61 as characterizing the limits of stability in respect to continuous
changes), making the corresponding changes in (201) and (202). We may be
certain that some of the formula thus formed will not fail. But for as perfectly
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rigorous method there is an advantage in the use of η, v,m1,m2, . . .mn as
independent variables. The condition that the phase may be varied without
altering any of the quantities t, µ1, µ2, . . . µn will then be expressed by the
equation

Rn`1 “ 0, (203)
in which Rn`1 denotes the same determinant as on page 58. To obtain the
second equation characteristic of critical phases, we observe that as a phase
which is critical cannot become unstable when varied so that n of the quantities
t, p, µ1, µ2, . . . , µn remain constant, the differential ofRn`1 for constant volume,
viz.

dRn`1

dη
dη `

dRn`1

dm1

dm1 . . . `
dRn`1

dmn

dmn, (204)

cannot become negative when n of the equations ( 172 ) are satisfied. Neither
can it have a positive value, for then its value might become negative by a
change of sign of dη, dm1, etc. Therefore the expression (204) has the value
zero, if n of the equations (112) are satisfied. This may be expressed by an
equation

S “ 0, (205)
in which S denotes a determinant in which the constituents are the same as
in Rn`1, except in a single horizontal line, in which the differential coefficients
in (204) are to be substituted. In whatever line this substitution is made, the
equation (205), as well as (203), will hold true of every critical phase without
exception.

If we choose t, p,m1,m2, . . .mn as independent variables, and write U for
the determinant.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d2ζ

dm2
1

d2ζ

dm2dm1

¨ ¨ ¨
d2ζ

dmn´1dm1

d2ζ

dm1dm2

d2ζ

dm2
2

¨ ¨ ¨
d2ζ

dmn´1dm2

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

d2ζ

dm1dmn´1

d2ζ

dm2dmn´1

¨ ¨ ¨
d2ζ

dm2
n´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(206)

and V for the determinant formed from this by substituting for the constituents
in any horizontal line the expressions

dU

dm1

,
dU

dm2

, ¨ ¨ ¨
dU

dmn´1

, (207)

the equations of critical phases will be

U “ 0, V “ 0. (208)
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It results immediately from the definition of a critical phase, that an in-
finitesimal change in the condition of a mass in such a phase may cause the
mass, if it remains in a state of dissipated energy (i.e., in a state in which
the dissipation of energy by internal processes is complete), to cease to be
homogeneous. In this respect a critical phase resembles any phase which has
a coexistent phase, but differs from such phases in that the two parts into
which the mass divides when it ceases to be homogeneous differ infinitely lit-
tle from each other and from the original phase, and that neither of these
parts is in general infinitely small. If we consider a change in the mass to be
determined by the values of dη, dv, dm1, dm2, . . . dmn, it is evident that the
change in question will cause the mass to cease to be homogeneous whenever
the expression

dRn`1

dη
dη `

dRn`1

dv
dv `

dRn`1

dm1

dm1, . . . `
dRn`1

dmn

dmn (209)

has a negative value. For if the mass should remain homogeneous, it would
become unstable, as Rn`1 would become negative. Hence, in general, any
change thus determined, or its reverse (determined by giving to dη, dv, dm1,
dm2, . . . dmn the same values taken negatively), will cause the mass to cease
to be homogeneous. The condition which must be satisfied with reference to
dη, dv, dm1, dm2, . . . dmn, in order that neither the change indicated, nor the
reverse, shall destroy the homogeneity of the mass, is expressed by equating
the above expression to zero.

But if we consider the change in the state of the mass (supposed to remain
in a state of dissipated energy) to be determined by arbitrary values of n ` 1
of the differentials dt, dp, dµ1, dµ2, . . . dµn, the case will be entirely different.
For, if the mass ceases to be homogeneous, it will consist of two coexistent
phases, and as applied to these, only n of the quantities t, p, µ1, µ2, . . . µn will
be independent. Therefore, for arbitrary variations of n`1 of these quantities,
the mass must in general remain homogeneous.

But if, instead of supposing the mass to remain in a state of dissipated
energy, we suppose that it remains homogeneous, it may easily be shown that
to certain values of n` 1 of the above differentials there will correspond three
different phases, of which one is stable with respect both to continuous and
to discontinuous changes, another is stable with respect to the former and
unstable with respect to the latter, and the third is unstable with respect to
both.

In general, however, if n of the quantities p, t, µ1, µ2, . . . µn or n arbitrary
functions of these quantities, have the same constant values as at a critical
phase, the linear series of phases thus determined will be stable, in the vicinity
of the critical phase. But if less than n of these quantities or functions of the
same together with certain of the quantities η1v,m1,m2, . . .mn, or arbitrary
functions of the latter quantities have the same values as at a critical phase,
so as to determine a linear series of phases, the differential of Rn`1 in such
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a series of phases will not in general vanish at the critical phase, so that in
general a part of the series will be unstable.

We may illustrate these relations by considering separately the cases in
which n “ 1 and n “ 2. If a mass of invariable composition is in a critical state,
we may keep its volume constant, and destroy its homogeneity by changing its
entropy (i.e., by adding or subtracting heat—probably the latter), or we may
keep its entropy constant and destroy its homogeneity by changing its volume;
but if we keep its pressure constant we cannot destroy its homogeneity by any
thermal action, nor if we keep its temperature constant can we destroy its
homogeneity by any mechanical action.

When a mass having two independently variable components is in a crit-
ical phase, and either its volume or its pressure is maintained constant, its
homogeneity may be destroyed by a change of entropy or temperature. Or, if
either its entropy or its temperature is maintained constant, its homogeneity
may be destroyed by a change of volume or pressure. In both these cases it
is supposed that the quantities of the components remain unchanged. But if
we suppose both the temperature and the pressure to be maintained constant,
the mass will remain homogeneous, however the proportion of the components
be changed. Or, if a mass consists of two coexistent phases, one of which
is a critical phase having two independently variable components, and either
the temperature or the pressure of the mass is maintained constant, it will
not be possible by mechanical or thermal means, or by changing the quan-
tities of the components, to cause the critical phase to change into a pair of
coexistent phases, so as to give three coexistent phases in the whole mass.
The statements of this paragraph and of the preceding have reference only to
infinitesimal changes.∗

∗ A brief abstract (which came to the author’s notice after the above was in type) of a memoir by M.
Duelaux, ”Sur la séparation des liquides mélangés, etc.” will be found in Comptes Rendus, vol. lxxxi: (1875),
p.815.
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On the Values of the Potentials when the Quantity of
one of the Components is very small.

If we apply equation (97) to a homogeneous mass having two independently
variable components S1 and S2, and make t, p, and m1 constant, we obtain

m1

ˆ

dµ1

dm2

˙

t,p,m1

` m2

ˆ

dµ2

dm2

˙

t,p,m1

“ 0. (210)

Therefore, for m2 “ 0, either
ˆ

dµ1

dm2

˙

t,p,m1

“ 0. (211)

or
ˆ

dµ2

dm2

˙

t,p,m1

“ 8. (212)

Now, whatever may be the composition of the mass considered, we may
always so choose the substance S1 that the mass shall consist solely of that
substance, and in respect to any other variable component S2, we shall have
m2 “ 0. But equation (212) cannot hold true in general as thus applied.
For it may easily be shown (as has been done with regard to the potential
on pages 38,40 ) that the value of a differential coefficient like that in (212)
for any given mass, when the substance S2 (to which m2 and µ2 relate) is
determined, is independent of the particular substance which we may regard
as the other component of the mass; so that, if equation (212) holds true when
the substance denoted by S1 has been so chosen that m2 “ 0, it must hold
true without such a restriction, which cannot generally be the case.

In fact, it is easy to prove directly that equation (211) will hold true of any
phase which is stable in regard to continuous changes and in which m2 “ 0, if
m2 is capable of negative as well as positive values. For by (171), in any phase
having that kind of stability, µ1 is an increasing function of m1 when t, p, and
m2 are regarded as constant. Hence, µ1 will have its greatest value when the
mass consists wholly of S1, i.e., when m2 “ 0. Therefore, if m2 is capable of
negative as well as positive values, equation (211) must hold true for m2 “ 0.
(This appears also from the geometrical representation of potentials in the m-ζ
curve. See page 66.)
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But if m2 is capable only of positive values, we can only conclude from the
preceding considerations that the value of the differential coefficient in (211)
cannot be positive. Nor, if we consider the physical significance of this case,
viz. that an increase of m2 denotes an addition to the mass in question of
a substance not before contained in it, does any reason appear for supposing
that this differential coefficient has generally the value zero. To fix our ideas,
let us suppose that S1 denotes water, and S2 a salt (either anhydrous or any
particular hydrate). The addition of the salt to water, previously in a state
capable of equilibrium with vapor or with ice, will destroy the possibility of
such equilibrium at the same temperature and pressure. The liquid will dissolve
the ice, or condense the vapor, which is brought in contact with it under
such circumstances, which shows that µ1 (the potential for water in the liquid
mass) is diminished by the addition of the salt, when the temperature and
pressure are maintained constant. Now there seems to be no a priori reason
for supposing that the ratio of this diminution of the potential for water to
the quantity of the salt which is added vanishes with this quantity. We should
rather expect that, for small quantities of the salt, an effect of this kind would
be proportional to its cause, i.e., that the differential coefficient in (211) would
have a finite negative value for an infinitesimal value of m2. That this is the
case with respect to numerous watery solutions of salts is distinctly indicated
by the experiments of Wüllner∗ on the tension of the vapor yielded by such
solutions, and of Rüdorff† on the temperature at which ice is formed in them;
and unless we have experimental evidence that cases are numerous in which the
contrary is true, it seems not unreasonable to assume, as a general law, that
when m2 has the value zero and is incapable of negative values, the differential
coefficient in (211) will have a finite negative value, and that equation (212)
will therefore hold true. But this case must be carefully distinguished from
that in which m2 is capable of negative values, which also may be illustrated
by a solution of a salt in water. For this purpose let S1 denote a hydrate of the
salt which can be crystallized, and let S2 denote water, and let us consider a
liquid consisting entirely of S1 and of such temperature and pressure as to be in
equilibrium with crystals of S1. In such a liquid, an increase or a diminution
of the quantity of water would alike cause crystals of S1 to dissolve, which
requires that the differential coefficient in (211) shall vanish at the particular
phase of the liquid for which m2 “ 0.

Let us return to the case in which m2 is incapable of negative values, and
examine, without other restriction in regard to the substances denoted by
S1 and S2, the relation between µ2 and m2

m1

for any constant temperature and

pressure and for such small values of m2

m1

that the differential coefficient in (211)
may be regarded as having the same constant value as when m2 “ 0, the values

∗ Pogg. Ann., vol. ciii. (1858), p. 529; vol. cv. (1858), p. 85; vol. cx. (1860), p. 564.
† Pogg. Ann, vol. cxiv.(1861) p. 63.
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of t, p, and m1 being unchanged. If we denote this value of the differential
coefficient by ´A

m1

, the value of A will be positive, and will be independent of

m1. Then for small values of m2

m1

we have by (210), approximately,

m2

ˆ

dµ2

dm2

˙

t,p,m1

“ A, (213)

i.e.,
ˆ

dµ2

d logm2

˙

t,p,m1

“ A. (214)

If we write the integral of this equation in the form

µ2 “ A log
Bm2

m1

, (215)

B like A will have a positive value depending only upon the temperature and
pressure. As this equation is to be applied only to cases in which the value
of m2 is very small compared with m1, we may regard m1

v
as constant, when

temperature and pressure are constant, and write

µ2 “ A log
Cm2

v
, (216)

C denoting a positive quantity, dependent only upon the temperature and
pressure.

We have so far considered the composition of the body as varying only in
regard to the proportion of two components. But the argument will be in no
respect invalidated, if we suppose the composition of the body to be capable of
other variations. In this case, the quantities A and C will be functions not only
of the temperature and pressure but also of the quantities which express the
composition of the substance of which together with S2 the body is composed.
If the quantities of any of the components besides S2 are very small (relatively
to the quantities of others), it seems reasonable to assume that the value of
µ2, and therefore the values of A and C, will be nearly the same as if these
components were absent.

Hence, if the independently variable components of any body are Sa, . . . Sg,
and Sh, . . . Sk, the quantities of the latter being very small as compared with
the quantities of the former, and are incapable of negative values, we may
express approximately the values of the potentials for Sh, . . . Sk by equations
(subject of course to the uncertainties of the assumptions which have been

84



made) of the form

µh “ Ah log
Chmh

v
, (217)

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

µk “ Ak log
Ckmk

v
, (218)

in which Ah, Ch, . . . Ak, Ck denote functions of the temperature, the pressure,
and the ratios of the quantities ma, . . .mg.

We shall see hereafter, when we come to consider the properties of gases,
that these equations may be verified experimentally in a very large class of
cases, so that we have considerable reason for believing that they express a
general law in regard to the limiting values of potentials.∗

∗ The reader will not fail to remark that, if we could assume the universality of this law, the statement
of the conditions necessary for equilibrium between different masses in contact would be much simplified.
For, as the potential for a substance which is only a possible component (see page 10 ) would always have
the value ´8, the case could not occur that the potential for any substance would have a greater value in
a mass in which that substance is only a possible component, than in another mass in which it is an actual
component: and the conditions (22) and (51) might be expressed with the sign of equality without exception
for the case of possible components.
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On Certain Points relating to the Molecular
Constitution of Bodies.

It not unfrequently occurs that the number of proximate components which
it is necessary to recognize as independently variable in a body exceeds the
number of components which would be sufficient to express its ultimate com-
position. Such is the case, for example, as has been remarked on page 9, in
regard to a mixture at ordinary temperatures of vapor of water and free hy-
drogen and oxygen. This case is explained by the existence of three sorts of
molecules in the gaseous mass, viz., molecules of hydrogen, of oxygen, and of
hydrogen and oxygen combined. In other cases, which are essentially the same
in principle, we suppose a greater number of different sorts of molecules, which
differ in composition, and the relations between these may be more compli-
cated. Other cases are explained by molecules which differ in the quantity of
matter which they contain, but not in the kind of matter, nor in the proportion
of the different kinds. In still other cases, there appear to be different sorts of
molecules, which differ neither in the kind nor in the quantity of matter which
they contain, but only in the manner in which they are constituter. What is
essential in the cases referred to is that a certain number of some sort or sorts
of molecules shall be equivalent to a certain number of some other sort or sorts
in respect to the kinds and quantities of matter which they collectively con-
tain, and yet the former shall never be transformed into the latter within the
body considered, nor the latter into the former, however the proportion of the
numbers of the different sorts of molecules may be varied, or the composition
of the body in other respects, or its thermodynamic state as represented by
temperature and pressure or any other two suitable variables, provided, it may
be, that these variations do not exceed certain limits. Thus, in the example
given above, the temperature must not be raised beyond a certain limit, or
molecules of hydrogen and of oxygen may be transformed into molecules of
water.

The differences in bodies resulting from such differences in the constitution
of their molecules are capable of continuous variation, in bodies containing
the same matter and in the same thermodynamic state as determined, for
example, by pressure and temperature, as the numbers of the molecules of
the different sorts are varied. These differences are thus distinguished from
those which depend upon the manner in which the molecules are combined to
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form sensible masses. The latter do not cause an increase in the number of
variables in the fundamental equation; but they may be the cause of different
values of which the function is sometimes capable for one set of values of the
independent variables, as, for example, when we have several different values
of ζ for the same values of t, p,m1,m2, . . .mn, one perhaps being for a gaseous
body, one for a liquid, one for an amorphous solid, and others for different
kinds of crystals, and all being invariable for constant values of the above
mentioned independent variables.

But it must be observed that when the differences in the constitution of
the molecules are entirely determined by the quantities of the different kinds
of matter in a body with the two variables which express its thermodynamic
state, these differences will not involve any increase in the number of variables
in the fundamental equation. For example, if we should raise the temperature
of the mixture of vapor of water and free hydrogen and oxygen, which we
have just considered, to a point at which the numbers of the different sorts
of molecules are entirely determined by the temperature and pressure and the
total quantities of hydrogen and of oxygen which are present, the fundamental
equation of such a mass would involve but four independent variables, which
might be the four quantities just mentioned. The fact of a certain part of
the matter present existing in the form of vapor of water would, of course, be
one of the facts which determine the nature of the relation between ζ and the
independent variables, which is expressed by the fundamental equation.

But in the case first considered, in which the quantities of the different
sorts of molecules are not determined by the temperature and pressure and
the quantities of the different kinds of matter in the body as determined by
its ultimate analysis, the components of which the quantities or the potentials
appear in the fundamental equation must be those which are determined by the
proximate analysis of the body, so that the variations in their quantities, with
two variations relating to the thermodynamic state of the body, shall include
all the variations of which the body is capable.∗ Such cases present no especial
difficulty; there is indeed nothing in the physical and chemical properties of
such bodies, so far as a certain range of experiments is concerned, which is
different from what might be, if the proximate components were incapable of
farther reduction or transformation. Yet among the various phases of the kinds
of matter concerned, represented by the different sets of values of the variables
which satisfy the fundamental equation, there is a certain class which merits
especial attention. These are the phases for which the entropy has a maximum
value for the same matter, as determined by the ultimate analysis of the body,
with the same energy and volume. To fix our ideas let us call the proximate
components S1, . . . Sn and the ultimate components Sa, . . . Sh; and let m1,
. . .mn denote the quantities of the former, and ma, . . .mh, the quantities of

∗ The terms proximate or ultimate are not necessarily to be understood in an absolute sense. All that is
said here and in the following paragraphs will apply to many cases in which components may conveniently
be regarded as proximate or ultimate, which are such only in a relative sense.
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the latter. It is evident that ma, . . .mh are homogeneous functions of the first
degree of m1, . . .mn; and that the relations between the substances S1, . . . Sn
might be expressed by homogeneous equations of the first degree between the
units of these substances, equal in number to the difference of the numbers
of the proximate and of the ultimate components. The phases in question
are those for which η is a maximum for constant values of ε, v,ma, . . .mk; or,
as they may also be described, those for which ε is a minimum for constant
values of η, v,ma, . . .mh; or for which ζ is a minimum for constant values of t, p,
ma, . . .mh. The phases which satisfy this condition may be readily determined
when the fundamental equation (which will contain the quantities m1 . . .mn or
µ1 . . . µn ) is known. Indeed it is easy to see that we may express the conditions
which determine these phases by substituting µ1, . . . µn for the letters denoting
the units of the corresponding substances in the equations which express the
equivalence in ultimate analysis between these units.

These phases may be called, with reference to the kind of change which we
are considering, phases of dissipated energy. That we have used a similar term
before, with reference to a different kind of changes, yet in a sense entirely
analogous, need not create confusion.

It is characteristic of these phases that we cannot alter the values of m1,
. . .mn in any real mass in such a phase, while the volume of the mass as well
as its matter remain unchanged, without diminishing the energy or increasing
the entropy of some other system. Hence, if the mass is large, its equilibrium
can be but slightly disturbed by the action of any small body, or by a single
electric spark, or by any cause which is not in some way proportioned to the
effect to be produced. But when the proportion of the proximate components
of a mass taken in connection with its temperature and pressure is not such
as to constitute a phase of dissipated energy, it may be possible to cause
great changes in the mass by the contact of a very small body. Indeed it is
possible that the changes produced by such contact may only be limited by
the attainment of a phase of dissipated energy. Such a result will probably be
produced in a fluid mass by contact with another fluid which contains molecules
of all the kinds which occur in the first fluid (or at least all those which contain
the same kinds of matter which also occur in other sorts of molecules), but
which differs from the first fluid in that the quantities of the various kinds of
molecules are entirely determined by the ultimate composition of the fluid and
its temperature and pressure. Or, to speak without reference to the molecular
state of the fluid, the result considered would doubtless be brought about
by contact with another fluid, which absorbs all the proximate components
of the first. S1, . . . Sn (or all those between which there exist relations of
equivalence in respect to their ultimate analysis), independently, and without
passive resistances, but for which the phase is completely determined by its
temperature and pressure and its ultimate composition (in respect at least to
the particular substances just mentioned). By the absorption of the substances
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S1, . . . Sn independently and without passive resistances, it is meant that when
the absorbing body is in equilibrium with another containing these substances,
it shall be possible by infinitesimal changes in these bodies to produce the
exchange of all these substances in either direction and independently. In
exception to the preceding statement may of course be made for cases in which
the result in question is prevented by the occurrence of some other kinds of
change; in other words, it is assumed that the two bodies can remain in contact
preserving the properties which have been mentioned.

The term catalysis has been applied to such action as we are considering.
When a body has the property of reducing another, without limitation with
respect to the proportion of the two bodies, to a phase of dissipated energy,
in regard to a certain kind of molecular change, it may be called a perfect
catalytic agent with respect to the second body and the kind of molecular
change considered.

It seems not improbable that in some cases in which molecular changes
take place slowly in homogeneous bodies, a mass of which the temperature
and pressure are maintained constant will be finally brought to a state of
equilibrium which is entirely determined by its temperature and pressure and
the quantities of its ultimate components, while the various transitory states
through which the mass passes (which are evidently not completely defined
by the quantities just mentioned) may be completely defined by the quantities
of certain proximate components with the temperature and pressure, and the
matter of the mass may be brought by processes approximately reversible from
permanent states to these various transitory states. In such cases, we may
form a fundamental equation with reference to all possible phases, whether
transitory or permanent; and we may also form a fundamental equation of
different import and containing a smaller number of independent variables,
which has reference solely to the final phases of equilibrium. The latter are
the phases of dissipated energy (with reference to molecular changes), and
when the more general form of the fundamental equation is known, it will be
easy to derive from it the fundamental equation for these permanent phases
alone.

Now, as these relations, theoretically considered, are independent of the
rapidity of the molecular changes, the question naturally arises, whether in
cases in which we are not able to distinguish such transitory phases, they may
not still have a theoretical significance. If so, the consideration of the subject
from this point of view, may assist us, in such cases, in discovering the form of
the fundamental equation with reference to the ultimate components, which
is the only equation required to express all the properties of the bodies which
are capable of experimental demonstration. Thus, when the phase of a body is
completely determined by the quantities of n independently variable compo-
nents, with the temperature and pressure, and we have reason to suppose that
the body is composed of a greater number n1 of proximate components, which
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are therefore not independently variable (while the temperature and pressure
remain constant), it seems quite possible that the fundamental equation of the
body may be of the same form as the equation for the phases of dissipated en-
ergy of analogous compounds of n1 proximate and n ultimate components, in
which the proximate components are capable of independent variation (with-
out variation of temperature or pressure). And if such is found to be the case,
the fact will be of interest as affording an indication concerning the proximate
constitution of the body.

Such considerations seem to be especially applicable to the very common
case in which at certain temperatures and pressures, regarded as constant, the
quantities of certain proximate components of a mass are capable of indepen-
dent variations, and all the phases produced by these variations are permanent
in their nature, while at other temperatures and pressures, likewise regarded
as constant, the quantities of these proximate components are not capable of
independent variation, and the phase may be completely defined by the quan-
tities of the ultimate components with the temperature and pressure. There
may be, at certain intermediate temperatures and pressures, a condition with
respect to the independence of the proximate components intermediate in char-
acter, in which the quantities of the proximate components are independently
variable when we consider all phases, the essentially transitory as well as the
permanent, but in which these quantities are not independently variable when
we consider the permanent phases alone. Now we have no reason to believe
that the passing of a body in a state of dissipated energy from one to another of
the three conditions mentioned has any necessary connection with any discon-
tinuous change of state. Passing the limit which separates one of these states
from another will not therefore involve any discontinuous change in the values
of any of the quantities enumerated in (99)-(103) on page 34, if m1,m2, . . .mn,
µ1, µ2, . . . µn are understood as always relating to the ultimate components of
the body. Therefore, if we regard masses in the different conditions mentioned
above as having different fundamental equations (which we may suppose to be
of any one of the five kinds described on page 34), these equations will agree at
the limits dividing these conditions not only in the values of all the variables
which appear in the equations, but also in all the differential coefficients of
the first order involving these variables. We may illustrate these relations by
supposing the values of t, p, and ζ for a mass in which the quantities of the
ultimate components are constant to be represented by rectilinear coordinates.
Where the proximate composition of such a mass is not determined by t and
p, the value of ζ will not be determined by these variables, and the points
representing connected values of t, p, and ζ will form a solid. This solid will be
bounded in the direction opposite to that in which ζ is measured, by a surface
which represents the phases of dissipated energy. In a part of the figure, all the
phases thus represented may be permanent, in another part only the phases in
the bounding surface, and in a third part there may be no such solid figure (for
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any phases of which the existence is experimentally demonstrable), but only a
surface. This surface together with the bounding surfaces representing phases
of dissipated energy in the parts of the figure mentioned above forms a con-
tinuous sheet, without discontinuity in regard to the direction of its normal at
the limits dividing the different parts of the figure which have been mentioned.
(There may, indeed, be different sheets representing liquid and gaseous states,
etc., but if we limit our consideration to states of one of these sorts, the case
will be as has been stated.).

We shall hereafter, in the discussion of the fundamental equations of gases,
have an example of the derivation of the fundamental equation for phases of
dissipated energy (with respect to the molecular changes on which the prox-
imate composition of the body depends) from the more general form of the
fundamental equation.
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The Conditions of Equilibrium for Heterogeneous
Masses under the Influence of Gravity.

Let us now seek the conditions of equilibrium for a mass of various kinds of
matter subject to the influence of gravity. It will be convenient to suppose
the mass enclosed in an immovable envelop which is impermeable to matter
and to heat, and in other respects, except in regard to gravity, to make the
same suppositions as on page 8. The energy of the mass will now consist of
two parts, one of which depends upon its intrinsic nature and state, and the
other upon its position in space. Let Dm denote an element of the mass, Dε
the intrinsic energy of this element, h its height above a fixed horizontal plane,
and g the force of gravity; then the total energy of the mass (when without
sensible notions) will be expressed by the formula

ż

Dε `

ż

ghDm, (219)

in which the integrations include all the elements of the mass; and the general
condition of equilibrium will be

δ

ż

Dε ` δ

ż

ghDm ŕ 0, (220)

the variations being subject to certain equations of condition. These must ex-
press that the entropy of the whole mass is constant, that the surface bounding
the whole mass is fixed, and that the total ’quantity of each of the component
substances is constant. We shall suppose that there are no other equations
of condition, and that the independently variable components are the same
throughout the whole mass; and we shall at first limit ourselves to the con-
sideration of the conditions of equilibrium with respect to the changes which
may be expressed by infinitesimal variations of the quantities which define the
initial state of the mass, without regarding the possibility of the formation at
any place of infinitesimal masses entirely different from any initially existing
in the same vicinity.

Let Dη,Dv,Dm1, . . .Dmn denote the entropy of the element Dm, its vol-
ume, and the quantities which it contains of the various components. Then

Dm “ Dm1 . . . ` Dmn, (221)
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and
δDm “ δDm1 . . . ` δDmn. (222)

Also, by equation (12),

δDε “ tδDη ´ pδDv ` µ1δDm1 . . . ` µnδDmn (223)

By these equations the general condition of equilibrium may be reduced to the
form

ż

tδDη ´

ż

pδDv `

ż

µ1δDm1 ¨ ¨ ¨ `

ż

µnδDmn

`

ż

gδhDm `

ż

ghδDm1 ¨ ¨ ¨ `

ż

ghδDmn ŕ 0.

(224)

Now it will be observed that the different equations of condition affect different
parts of this condition, so that we must have, separately,

ż

tδDη ŕ 0, if
ż

δDη “ 0; (225)

´

ż

pδDv `

ż

gδhDm ŕ 0, (226)

if the bounding surface is unvaried;
ż

µ1δDm1 `

ż

ghδDm1 ŕ 0, if
ż

δDm1 “ 0;
ż

µnδDmn `

ż

ghδDmn ŕ 0, if
ż

δDmn “ 0.

,

/

/

.

/

/

-

(227)

From (225) we may derive the condition of thermal equilibrium,

t “ Const. (228)

Condition (226) is evidently the ordinary mechanical condition of equilib-
rium, and may be transformed by any of the usual methods. We may, for
example, apply the formula to such motions as might take place longitudinally
within an infinitely narrow tube, terminated at both ends by the external sur-
face of the mass, but otherwise of indeterminate form. If we denote by m the
mass, and by v the volume. included in the part of the tube between one end
and a transverse section of variable position, the condition will take the form

´

ż

pδdv `

ż

gδhdm ŕ 0. (229)

in which the integrations include the whole contents of the tube. Since no
motion is possible at the ends of the tube,

ż

pδdv `

ż

δvdp “

ż

dppδvq “ 0. (230)
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Again, if we denote by γ the density of the fluid,
ż

gδhdm “

ż

g
dh

dv
δγdv “

ż

gγδvdh. (231)

By these equations condition (229) may be reduced to the form
ż

δvpdp ` gγdhq ŕ 0. (232)

Therefore, since δv is arbitrary in value,

dp “ ´gγdh, (233)

which will hold true at any point in the tube, the differentials being taken with
respect to the direction of the tube at that point. Therefore, ss the form of
the tube is indeterminate, this equation must hold true, without restriction,
throughout the whole mass. It evidently requires that the pressure shall be a
function of the height alone, and that the density shall be equal to the first
derivative of this function, divided by ´g.

Conditions (227) contain all that is characteristic of chemical equilibrium.
To satisfy these conditions it is necessary and sufficient that

µ1 ` gh “ const.
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

µn ` gh “ const.

,

/

.

/

-

(234)

The expressions µ1, . . . µn denote quantities which we have called the potentials
for the several components, and which are entirely determined at any point
in a mass by the nature and state of the mass about that point. We may
avoid all confusion between these quantities and the potential of the force of
gravity, if we distinguish the former, when necessary, as intrinsic potentials.
The relations indicated by equations (234) may then be expressed as follows:

When a fluid mass is in equilibrium under the influence of gravity, and has
the same independently variable components throughout, the intrinsic poten-
tials for the several components are constant in any given level, and diminish
uniformly as the height increases, the difference of the values of the intrinsic
potential for any component at two different levels being equal to the work done
by the force of gravity when a unit of matter falls from the higher to the lower
level.

The conditions expressed by equations (228), (233), (234) are necessary
and sufficient for equilibrium, except with respect to the possible formation
of masses which are not approximately identical in phase with any previously
existing about the points where they may be formed. The possibility of such
formations at any point is evidently independent of the action of gravity, and
is determined entirely by the phase or phases of the matter about that point.
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The conditions of equilibrium in this respect have been discussed on pages 20-
25.

But equations (228), (233), and (234) are not entirely independent. For
with respect to any mass in which there are no surfaces of discontinuity (i.e.,
surfaces where adjacent elements of mass have finite differences of phase), one
of these equations will be a consequence of the others. Thus by (228) and (234),
we may obtain from (97), which will hold true of any continuous variations of
phase, the equation

vdp “ ´g pm1 . . . ` mnq dh; (235)
or

dp “ ´gγdh; (236)
which will therefore hold true in any mass in which equations (228) and (234)
are satisfied, and in which there are no surfaces of discontinuity. But the
condition of equilibrium expressed, by equation (233) has no exception with
respect to surfaces of discontinuity; therefore in any mass in which such surfaces
occur, it will be necessary for equilibrium, in addition to the relations expressed
by equations (228) and (234), that there shall be no discontinuous change of
pressure at these surfaces.

This superfluity in the particular conditions of equilibrium which we have
found, as applied to a mass which is everywhere continuous in phase, is due
to the fact that we have made the elements of volume variable in position and
size, while the matter initially contained in these elements is not supposed to
be confined to them. Now, as the different components may move in different
directions when the state of the system varies, it is evidently impossible to
define the elements of volume so as always to include the same matter; we
must, therefore, suppose the matter contained in the elements of volume to
vary; and therefore it would be allowable to make these elements fixed in
space. If the given mass has no surfaces of discontinuity, this would be much
the simplest plan. But if there are any surfaces of discontinuity, it will be
possible for the state of the given mass to vary, not only by infinitesimal
changes of phase in the fixed elements of volume, but also by movements of
the surfaces of discontinuity. It would therefore be necessary to add to our
general condition of equilibrium terms relating to discontinuous changes in the
elements of volume about these surfaces, —a necessity which is avoided if we
consider these elements movable, as we can then suppose that each element
remains always on the same side of the surface of discontinuity.

Method of treating the preceding problem, in which the
elements of volume are regarded as fixed.

It may be interesting to see in detail how the particular conditions of equilib-
rium may be obtained if we regard the elements of volume as fixed in position
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and size, and consider the possibility of finite as well as infinitesimal changes
of phase in each element of volume. If we use the character ∆ to denote the
differences determined by such finite differences of phase, we may express the
variation of the intrinsic energy of the whole mass in the form

ż

δDε `

ż

∆Dε, (237)

in which the first integral extends over all the elements which are infinitesimally
varied, and the second over all those which experience a finite variation. We
may regard both integrals as extending throughout the whole mass, but their
values will be zero except for the parts mentioned.

If we do not wish to limit ourselves to the consideration of masses so small
that the force of gravity can be regarded as constant in direction and in inten-
sity, we may use Υ to denote the potential of the force of gravity, and express
the variation of the part of the energy which is due to gravity in the form

´

ż

ΥδDm ´

ż

Υ∆Dm. (238)

We shall then have, for the general condition of equilibrium,
ż

δDε `

ż

∆Dε ´

ż

ΥδDm ´

ż

Υ∆Dm ŕ 0; (239)

and the equations of condition will be
ż

δDη ` δ∆Dη “ 0, (240)

ż

δDm1 `

ż

∆Dm1 “ 0,
ż

δDmn `

ż

∆Dmn “ 0.

,

/

/

.

/

/

-

(241)

We may obtain a condition of equilibrium independent of these equations of
condition, by subtracting these equations, multiplied each by an indeterminate
constant, from condition (239). If we denote these indeterminate constants by
T,M1, . . .Mn, we shall obtain after arranging the terms(??)

ż

δDε ´ ΥδDm ´ TδDη ´ M1δDm1 . . . ´ MnδDmn

`

ż

∆Dε ´ Υ∆Dm ´ T∆Dη ´ M1∆Dm2 . . . ´ mnδDmn ŕ 0.

(242)

The variations, both infinitesimal and finite, in this condition are independent
of the equations of condition (240) and (241), and are only subject to the
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condition that the varied values of Dε,Dη, Dm1, . . .Dmn for each element are
determined by a certain change of phase. But as we do not suppose the same
element to experience both a finite and an infinitesimal change of phase, we
must have

δDε ´ ΥδDm ´ TδDη ´ M1δDm1 ¨ ¨ ¨ ´ MnδDmn ŕ 0 (243)

and

∆Dε ´ Υ∆Dm ´ T∆Dη ´ M1∆Dm1 . . . ¨ ¨ ¨Mn∆Dmn ŕ 0. (244)

By equation (12), and in virtue of the necessary relation (222), the first of
these conditions reduces to

pt ´ T qδDη ` pµ1 ´ Υ ´ M1qδDm1 ¨ ¨ ¨

` pµn ´ Υ ´ Mnq δDmn ŕ 0;
(245)

for which it is necessary and sufficient that

t “ T, (246)

µ1 ´ Υ “ M1,

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

µn ´ Υ “ Mn.

,

/

.

/

-

∗ (247)

Condition (244) may be reduced to the form

∆Dε ´ T∆Dη ´ pΥ ` M1q∆Dm1 . . . ´ pΥ ` Mnq∆Dmn ŕ 0; (248)

and by (246) and (247) to

∆Dε ´ t∆Dη ´ µ1∆Dm1 . . . ´ µn∆Dmn ŕ 0. (249)

If values determined subsequently to the change of phase are distinguished by
accents, this condition may be written

Dε1 ´ tDη1´µ1Dm
1
1 . . . ´ µnDm

1
n

´ Dε ` tDη ` µ1Dm1 . . . ` µnDmn ŕ 0,
(250)

which may be reduced by (93) to

Dε1 ´ tDη1 ´ µ1Dm
1
1 . . . ´ µnDm

1
n ` pDv ŕ 0. (251)

∗ The gravitation potential is here supposed to be defined in the usual way. But if it were defined so
as to decrease when a body falls, we should have the sign ` instead of ´ in these equations: i.e., for each
component, the sum of the gravitation and intrinsic potentials would be constant throughout the whole
mass.
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Now if the element of volume Dv is adjacent to a surface of discontinuity, let
us suppose Dε1,Dη1,Dm1

1, . . .Dm
1
n to be determined (for the same element of

volume) by the phase existing on the other side of the surface of discontinuity.
As t, µ1, . . . µn have the same values on both sides of this surface, the condition
may be reduced by (93) to

´p1Dv ` pDv ŕ 0. (252)

That is, the pressure must not be greater on one side of a surface of disconti-
nuity than on the other.

Applied more generally, (251) expresses the condition of equilibrium with
respect to the possibility of discontinuous changes of phases at any point. As
Dv1 “ Dv, the condition may also be written

Dε1 ´ tDη1 ` pDv1 ´ µ1Dm
1
1 . . . ´ µnDm

1
n ŕ 0. (253)

which must hold true when t, p, µ1, . . . µn have values determined by any point
in the mass, and Dε1,Dη1,Dv1,Dm1

1, . . .Dm
1
n have values determined by any

possible phase of the substances of which the mass is composed. The appli-
cation of the condition is, however, subject to the limitations considered on
pages 20-25. It may easily be shown (see page 51) that for constant values of
t, µ1, . . . µn, and of Dv1, the first member of (253) will have the least possible
value when Dε1, Dη1,Dm1

1, . . .Dm
1
n are determined by a phase for which the

temperature has the value t, and the potentials the values µ1, . . . µn. It will
be sufficient, therefore, to consider the condition as applied to such phases, in
which case it may be reduced by (93) to

p ´ p1 ŕ 0. (254)

That is, the pressure at any point must be as great as that of any phase
of the same components, for which the temperature and the potentials have
the same values as at that point. We may also express this condition by
saying that the pressure must be as great as is consistent with equations (246),
(247). This condition with the equations mentioned will always be sufficient
for equilibrium; when the condition is not satisfied, if equilibrium subsists, it
will be at least practically unstable.

Hence, the phase at any point of a fluid mass, which is in stable equilibrium
under the influence of gravity (whether this force is due to external bodies or
to the mass itself), and which has throughout the same independently variable
components, is completely determined by the phase at any ocher point and
the difference of the values of the gravitational potential for the two points.
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Fundamental Equations of Ideal Gases and
Gas-Mixtures.

For a constant quantity of a perfect or ideal gas, the product of the volume
and pressure is proportional to the temperature, and the variations of energy
are proportional to the variations of temperature. For a unit of such a gas we
may write

pv “ at,

dε “ cdt,

a and c denoting constants. By integration, we obtain the equation

ε “ ct ` E,

in which E also denotes a constant. If by these equations we eliminate t and
p from (11) we obtain

dε “
ε ´ E

c
dη ´

a

v

ε ´ E

c
dv,

or
c

dε

ε ´ E
“ dη ´ a

dv

v
.

The integral of this equation may be written in the form

c log
ε ´ E

c
“ η ´ a log v ´ H,

where H denotes a fourth constant. We may regard E as denoting the energy
of a unit of the gas for t “ 0;H its entropy for t “ 1 and v “ 1; a its pressure in
the latter state, or its volume for t “ 1 and p “ 1; c its specific heat at constant
volume. We may extend the application of the equation to any quantity of the
gas, without altering the values of the constants, if we substitute ε

m
,
η

m
,
v

m
for

ε, η, v, respectively. This will give

c log
ε ´ Em

cm
“

η

m
´ H ` a log

m

v
. (255)

This is a fundamental equation (see pages 30-35) for an ideal gas of invari-
able composition. It will be observed that if we do not have to consider the
properties of the matter which forms the gas as appearing in any other form
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or combination, but solely as constituting the gas in question (in a state of
purity), we may without loss of generality give to E and H the value zero, or
any other arbitrary values. But when the scope of our investigations is not
thus limited we may have determined the states of the substance of the gas for
which ε “ 0 and η “ 0 with reference to some other form, in which the sub-
stance appears, or, if the substance is compound, the states of its components
for which ε “ 0 and η “ 0 may be already determined; so that the constants
E and H cannot in general be treated as arbitrary.

We obtain from (255) by differentiation

c

ε ´ Em
dε “

1

m
dη ´

a

v
dv `

ˆ

cE

ε ´ Em
`
c ` a

m
´

η

m2

˙

dm, (256)

whence, in virtue of the general relation expressed by (86),

t “
ε ´ Em

cm
. (257)

p “ a
ε ´ Em

cv
, (258)

µ “ E `
ε ´ Em

cm2
pcm ` am ´ ηq. (259)

We may obtain the fundamental equation between ψ, t, v, and m from equa-
tions (87), (255), and (257). Eliminating ε we have

ψ “ Em ` cmt ´ tη,

and
c log t “

η

m
´ H ` a log

m

v
and eliminating η, we have the fundamental equation

ψ “ Em ` mt
´

c ´ H ´ c log t ` a log
m

v

¯

. (260)

Differentiating this equation, we obtain

dψ “ ´mpH ` c log t `a log
v

m

¯

dt ´
amt

v
dv

`

´

E ` t
´

c ` a ´ H ´ c log t ` a log
m

v

¯¯

dm
(261)

whence, by the general equation (88),

η “ m
´

H ` c log t ` a log
v

m

¯

, (262)

p “
amt

v
, (263)
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µ “ E ` t
´

c ` a ´ H ´ c log t ` a log
m

v

¯

. (264)

From (260), by (87) and (91) we obtain

ζ “ Em ` mt
´

c ´ H ´ c log t ` a log
m

v

¯

` pv,

and eliminating v by means of (263), we obtain the fundamental equation

ζ “ Em ` mt
´

c ` a ´ H ´ pc ` aq log t ` a log
p

a

¯

. (265)

From this, by differentiation and comparison with (92), we may obtain the
equations

η “ m
´

H ` pc ` aq log t ´ a log
p

a

¯

, (266)

v “
amt

p
, (267)

µ “ E ` t
´

c ` a ´ H ´ pc ` aq log t ` a log
p

a

¯

. (268)

The last is also a fundamental equation. It may be written in the form

log
p

a
“
H ´ c ´ a

ct
`
c ` a

a
log t `

µ ´ E

at
, (269)

or, if we denote by e the base of the Naperian system of logarithms.

p “ ae
H ´ c ´ a

a t

c ` a

a e
µ ´ E

at .

The fundamental equation between χ, η, p, and m may also be easily ob-
tained; it is

pc ` aq log
χ ´ Em

pc ` aqm
“

η

m
´ H ` a log

p

a
, (271)

which can be solved with respect to χ.
Any one of the fundamental equations (255), (260), (265), (270), and (271),

which are entirely equivalent to one another, may be regarded as defining an
ideal gas. It will be observed that most of these equations might be abbreviated
by the use of different constants. In (270), for example, a single constant might

be used for ae
∆ ´ c ´ a

a , and another for c ` a

a
. The equations have been given

in the above form, in order that the relations between the constants occurring
in the different equations might be most clearly exhibited. The sum c ` a
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is the specific heat for constant pressure, as appears if we differentiate (266)
regarding p and m as constant.∗

The preceding fundamental equations all apply to gases of constant com-
position, for which the matter is entirely determined by a single variable pmq.
We may obtain corresponding fundamental equations for a mixture of gases, in
which the proportion of the components shall be variable, from the following

∗ We may easily obtain the equation between the temperature and pressure of a saturated vapor, if we
know the fundamental equations of the substance both in the gaseous, and in the liquid or solid state. If
we suppose that the density and the specific heat at constant pressure of the liquid may be regarded as
constant quantities (for such moderate pressures as the liquid experiences while in contact with the vapor),
and denote this specific heat by k, and the volume of a unit of the liquid by V , we shall have for a unit of
the liquid

tdη “ kdt,

whence
η “ k log t ` H 1,

where H 1 denotes a constant. Also, from this equation and (97),

dµ “ ´
`

k log t ` H 1
˘

dt ` V dp

whence
µ “ kt ´ kt log t ´ H 1t ` vp ` E1,

where E1 denotes another constant. This is a fundamental equation for the substance in the liquid state. If
(268) represents the fundamental equation for the same substance in the gaseous state, the two equations
will both hold true of coexistent liquid and gas. Eliminating µ we obtain

log
p

a
“
H ´ H 1 ` k ´ c ´ a

a
´
k ´ c ´ a

a
log t ´

E ´ E1

at
`
V

a

p

t

If we neglect the last term, which is evidently equal to the density of the vapor divided by the density of the
liquid, we may write

log p “ A ´ B log t ´
C

t
,

A,B, and C denoting constants. If we make similar suppositions in regard to the substance in the solid
state, the equation between the pressure and temperature of coexistent solid and gaseous phases will of
course have the same form.
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considerations.
It is a rule which admits of a very general and in many cases very exact

experimental verification, that if several liquid or solid substances which yield
different gases or vapors are simultaneously in equilibrium with a mixture of
these gases (cases of chemical action between the gases being excluded), the
pressure in the gas-mixture is equal to the sum of the pressures of the gases
yielded at the same temperature by the various liquid or solid substances taken
separately. Now the potential in any of the liquids or solids for the substance
which it yields in the form of gas has very nearly the same value when the liquid
or solid is in equilibrium with the gas-mixture as when it is in equilibrium with
its own gas alone. The difference of the pressure in the two cases will cause a
certain difference in the values of the potential, but that this difference will be
small, we may infer from the equation

ˆ

dµ1

dp

˙

t,m

“

ˆ

dv

dm1

˙

t,p,m

, (272)

which may be derived from equation (92). In most cases, there will be a
certain absorption by each liquid of the gases yielded by the others, but as
it is well known that the above rule does not apply to cases in which such
absorption takes place to any great extent, we may conclude that the effect
of this circumstance in the cases with which we have to do is of secondary
importance. If we neglect the slight differences in the values of the potentials
due to these circumstances, the rule may be expressed as follows:

∗ A similar equation will also apply to the phases of an ideal gas which are coexistent with two different
kinds of solids, one of which can be formed by the combination of the gas with the other, each being of
invariable composition and of constant specific heat and density. In this case we may write for one solid

µ1 “ k1t ´ k1t log t ´ H 1t ` V 1p ` E1,

and for the other
µ2 “ k2t ´ k2t log t ´ H2t ` V 2p ` E2,

and for the gas
µ3 “ E1 ` t

´

c ` a ´ H ´ pc ` aq log t ` a log
p

a

¯

.

Now if a unit of the gas unites with the quantity χ of the first solid to form the quantity 1`λ of the second
it will be necessary for equilibrium (see pages 13, 14) that

µ3 ` λµ1 “ p1 ` λqµ2.

Substituting the values of µ1, µ2, µ3 given above, we obtain after arranging the terms and dividing by at

log
p

a
“ A ´ B log t ´

C

b
` D

p

t
,

when
A “

H ` λH 1 ´ p1 ` λqH2 ´ c ´ a ´ λk1 ` p1 ` λqK2

a
,

B “
p1 ` λqk2 ´ λk1 ´ c ´ a

a
,

C “
E ` λE1 ´ p1 ` λqE2

a
, D “

p1 ` λqV 2 ´ λV 1

a
.

∗ We may conclude from this that an equation of the same form may be applied to an ideal gas in
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The pressure in a mixture of different gases is equal to the sum of the
pressures of the different gases as existing each by itself at the same temperature
and with the same value of its potential.

To form a precise idea of the practical significance of the law as thus stated
with reference to the equilibrium of two liquids with a mixture of the gases
which they emit, when neither liquid absorbs the gas emitted by the other,
we may imagine a long tube closed at each end and bent in the form of a W
to contain in each of the descending loops one of the liquids, and above these
liquids the gases which they emit, viz. the separate gases at the ends of the
tube, and the mixed gases in the middle. We may suppose the whole to he
in equilibrium, the difference of the pressures of the gases being balanced by
the proper heights of the liquid columns. Now it is evident from the principles
established on pages 92-99 that the potential for either gas will have the same
value in the mixed and in the separate gas at the same level, and therefore
according to the rule in the form which we have given, the pressure in the
gas-mixture is equal to the sum of the pressures in the separate gases, all these
pressures being measured at the same level. Now the experiments by which
the rule has been established relate rather to the gases in the vicinity of the
equilibrium with a liquid of which it forms an independently variable component, when the specific heat
and density of the liquid are entirely determined by its composition, except that the letters A,B,C, and D
must in this case be understood to denote quantities which vary with the composition of the liquid. But to
consider the case more in detail, we have for the liquid by ( A )

ζ

m
“ µ “ kt ´ kt log t ´ H 1t ` V p ` E1,

where k,H 1, V, E1 denote quantities which depend only upon the composition of the liquid. Hence, we may
write

ζ “ k⃗t ´ k⃗t log t ´ H⃗t ` V⃗ p ` E⃗,

where k⃗, H⃗, V⃗ , and E⃗ denote functions of m2,m2, etc. (the quantities of the several components of the
liquid). Hence, by (92),

µ1 “
dk⃗

dm1
t ´

dk⃗

dm1
t log t ´

dH⃗

dm1
t `

dV⃗

dm1
p `

dE⃗

dm1
.

If the component to which this potential relates is that which also forms the gas, we shall have by (269)

log
p

a
“
H ´ c ´ a

a
`
c ` a

a
log t `

µ1 ´ E

at
.

Eliminating µ1, we obtain the equation

log
p

a
“ A ´ B log t ´

C

t
` D

p

t
.

in which A,B,C, and D denote quantities which depend only upon the composition of the liquid, viz :

A “
1

a

˜

H⃗ ´
dH⃗

dm1
´ c ´ a `

dk⃗

dm1

¸

.

B “
1

a

˜

dk⃗

dm1
´ c ´ a

¸

,

C “
1

a

˜

E ´
dE⃗

dm1

¸

, D “
1

a

dV⃗

dm1
.

With respect to some of the equations which have here been deduced, the reader may compare Professor
Kirchhoff ”Ueber die Spannung des Dampfes von Mischungen ans Wasser und Schwefelsäure,” Pogg. Ann.,
vol. civ. (1858), p. 612; and Dr. Rankine ”On Saturated Vapors,” Phil. Mag., vol xxxi- (1866), p. 199.
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surfaces of the liquids. Yet, although the differences of lever in these surfaces
may be considerable, the corresponding differences of pressure in the columns
of gas will certainly be very small in all cases which can be regarded as falling
under the laws of ideal gases, for which very great pressures are not admitted.

If we apply the above law to a mixture of ideal gases and distinguish by
subscript numerals the quantities relating to the different gases, and denote by
ÿ

1
the sum of all similar terms obtained by changing the subscript numerals,

we shall have by (270)

p “
ÿ

1

ˆ

a1e
H1´c1´a1

a1 t
c1`a1
a1 e

µ1´E1

a1t

˙

. (273)

It will be legitimate to assume this equation provisionally as the funda-
mental equation defining an ideal gas-mixture, and afterwards to justify the
suitableness of such a definition by the properties which may be deduced from
it. In particular, it will be necessary to show that an ideal gas-mixture as
thus defined, when the proportion of its components remains constant, has all
the properties which have already been assumed for an ideal gas of invariable
composition; it will also be desirable to consider more rigorously and more
in detail the equilibrium of such a gas-mixture with solids and liquids, with
respect to the above rule.

By differentiation and comparison with (98) we obtain
η

v
“

ÿ

1

ˆˆ

c1 ` a1 ´
µ1 ´ E1

t

˙

e
H1´c1´a1

a1 t
c1
a1 e

µ1´E1

a1t

˙

, (274)

m1

v
“e

H1´c1´a1
a1 t

c1
a1 e

µ1´E1

a1t ,

m2

v
“e

H2´c2´a2
a2 t

c2
a2 e

µ2´E2

a2t ,

etc.

,

/

/

/

/

.

/

/

/

/

-

(275)

Equations (275) indicate that the relation between the temperature, the den-
sity of any component, and the potential for that component, is not affected
by the presence of the other components. They may also be written

µ1 “ E1 ` t
´

c1 ` a1 ´ H1 ´ c1 log t ` a1 log
m1

v

¯

,
)

etc.
(276)

Eliminating µ1, µ2, etc. from (273) and (274) by means of (275) and (276),
we obtain

p “
ÿ

1

a1m1t

v
, (277)

η “
ÿ

1

ˆ

m1H1 ` m1c1 log t ` m1a1 log
v

m1

˙

. (278)
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Equation (211) expresses the familiar principle that the pressure in a gas-
mixture is equal to the sum of the pressures which the component gases would
possess if existing separately with the same volume at the same temperature.
Equation (278) expresses a similar principle in regard to the entropy of the
gas-mixture.

From (276) and (277) we may easily obtain the fundamental equation be-
tween ψ, t, v,m1,m2, etc. For by substituting in (94) the values of p, µ1, µ2,
etc. taken from these equations, we obtain

ψ “
ÿ

1

´

E1m1 ` m1t
´

c1 ´ H1 ´ c1 log t ` a1 log
m1

v

¯¯

. (279)

If we regard the proportion of the various components as constant, this
equation may be simplified by writing

m for
ÿ

1
m1,

cm for
ÿ

1
pc1m2q,

am for
ÿ

1
pa1m1q.

Em for
ÿ

1
pE1m1q,

and Hm ´ am logm for
ÿ

1
pH1m1 ´ a1m1 logm1q.

The values of c, a, E, and H will then be constant and m will denote the
total quantity of gas. As the equation will thus be reduced to the form of
(260), it is evident that an ideal gas-mixture, as defined by (273) or (279),
when the proportion of its components remains unchanged, will have all the
properties which we have assumed for an ideal gas of invariable composition.
The relations between the specific heats of the gas mixture at constant volume
and at constant pressure and the specific heats of its components are expressed
by the equations

c “
ÿ

1

m1c1
m

, (280)

and
c ` a “

ÿ

1

m1 pc1 ` a1q

m
. (281)

We have already seen that the values of t, v,m1, µ1 in a gas-mixture are such
as are possible for the component G1 (to which m1 and µ1 relate) existing
separately. If we denote by p1, η1, ψ1, ε1, χ1, ζ1 the connected values of the
several quantities which the letters indicate determined for the gas G1 as thus
existing separately, and extend this notation to the other components, we shall
have by (273), (274), and (279)

p “
ÿ

1
p1, η “

ÿ

1
η1, ψ “

ÿ

1
ψ1; (282)

whence by (87), (89), and (91)

ε “
ÿ

1
ε1, χ “

ÿ

1
χ1, ζ “

ÿ

1
ζ1. (283)
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The quantities p, η, ψ, ε, χ, ζ relating to the gas-mixture may therefore be
regarded as consisting of parts which may be attributed to the several compo-
nents in such a manner that between the parts of these quantities which are
assigned to any component, the quantity of that component, the potential for
that component, the temperature, and the volume, the same relations shall
subsist as if that component existed separately. It is in this sense that we
should understand the law of Dalton, that every gas is as a vacuum to every
other gas.

It is to be remarked that these relations are consistent and possible for a
mixture of gases which are not ideal gases, and indeed without any limitation
in regard to the thermodynamic properties of the individual gases. They are
all consequences of the law that the pressure in a mixture of different gases
is equal to the sum of the pressures of the different gases as existing each by
itself at the same temperature and with the same value of its potential. For
let p1, η1, ε1, ψ1, χ1, ζ1; p2, etc.; etc. be defined as relating to the different gases
existing each by itself with the same volume, temperature, and potential as in
the gas-mixture; if

p “
ÿ

1
p1,

then
ˆ

dp

dµ1

˙

t,µ1,...µn

“

ˆ

dp1
dµ1

˙

t

;

and therefore, by (98), the quantity of any component gas G1 in the gas-
mixture, and in the separate gas to which p1, η1, etc. relate, is the same and
may be denoted by the same symbol m1. Also

η “ v

ˆ

dp

dt̄

˙

µ1,...µn

“ v
ÿ

1

ˆ

dp

dt

˙

µ1

“
ÿ

1
η1;

whence also, by (93)-(96),

ε “
ÿ

1
ε1, ψ “

ÿ

1
ψ1, χ “

ÿ

1
χ1, ζ “

ÿ

1
ζ1.

All the same relations will also hold true whenever the value of ψ for the
gas-mixture is equal to the sum of the values of this function for the several
component gases existing each by itself in the same quantity as in the gas-
mixture and with the temperature and volume of the gas-mixture. For if p1,
η1, ε1, ψ1, χ1, ζ1; p2, etc.; etc. are defined as relating to the components existing
thus by themselves, we shall have

ψ “
ÿ

1
ψ1
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whence
ˆ

dψ

dm1

˙

t,v,m

“

ˆ

dψ1

dm1

˙

t1,v

∗

Therefore. by (88), the potential µ1 has the same value in the gas mixture and
in the gas G1 existing separately as supposed. Moreover,

η “ ´

ˆ

dψ

dt

˙

v,m

“ ´
ÿ

1

ˆ

dψ1

dt

˙

v,m

“
ÿ

1
η1,

and
p “ ´

ˆ

dψ

dv

˙

t,m

“ ´
ÿ

1

ˆ

dψ1

dv

˙

t,m

“
ÿ

1
p1,

whence
ε “

ÿ

1
ε1, χ “

ÿ

1
χ1, ζ “

ÿ

1
ζ1.

Whenever different bodies are combined without communication of work
or heat between them and external bodies, the energy of the body formed by
the combination is necessarily equal to the sum of the energies of the bodies
combined. In the case of ideal gas-mixtures, when the initial temperatures of
the gas-masses which are combined are the same (whether these gas-masses
are entirely different gases, or gas-mixtures differing only in the proportion of
their components), the condition just mentioned can only be satisfied when
the temperature of the resultant gas-mixture is also the same. In such combi-
nations, therefore, the final temperature will be the same as the initial.

If we consider a vertical column of an ideal gas-mixture which is in equilib-
rium, and denote the densities of one of its components at two different points
by γ1 and γ1

1, we shall have by (275) and (234)

γ1
γ1
1

“ e
µ1´µ1

1

a1t “ e
gph1´hq

a1t . (284)

From this equation, in which we may regard the quantities distinguished by
accents as constant, it appears that the relation between the density of any
one of the components and the height is not affected by the presence of the
other components.

The work obtained or expended in any reversible process of combination or
separation of ideal gas-mixtures at constant temperature, or when the temper-
atures of the initial and final gas-masses and of the only external source of heat
or cold which is used are all the same, will be found by taking the difference
of the sums of the values of ψ for the initial, and for the final gas-masses. (See

∗ A subscript m after a differential coefficient relating to a body having several independently variable
components is used here and elsewhere in this paper to indicate that each of the quantities m1,m2, etc.,
unless its differential occurs in the expression to which the suffix is applied, is to be regarded as constant in
the differentiation.
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pages 35, 36.) It is evident from the form of equation (279) that this work
is equal to the sum of the quantities of work which would be obtained or ex-
pended in producing in each different component existing separately the same
changes of density which that component experiences in the actual process for
which the work is sought.∗

We will now return to the consideration of the equilibrium of a liquid with
the gas which it emits as affected by the presence of different gases, when
the gaseous mass in contact with the liquid may be regarded as an ideal gas-
mixture.

It may first be observed, that the density of the gas which is emitted by the
liquid will not be affected by the presence of other gases which are not absorbed
by the liquid, when the liquid is protected in any way from the pressure due to
these additional gases. This may be accomplished by separating the liquid and
gaseous masses by a diaphragm which is permeable to the liquid. It will then
be easy to maintain the liquid at any constant pressure which is not greater
than that in the gas. The potential in the liquid for the substance which it
yields as gas will then remain constant, and therefore the potential for the
same substance in the gas and the density of this substance in the gas and
the part of the gaseous pressure due to it will not be affected by the other
components of the gas.

But when the gas and liquid meet under ordinary circumstances, i.e., in a
free plane surface, the pressure in both is necessarily the same, as also the value
of the potential for any common component S1. Let us suppose the density
of an insoluble component of the gas to vary, while the composition of the
liquid and the temperature remain unchanged. If we denote the increments of
pressure and of the potential for S1 by dp and dµ1, we shall have by (272)

dµ1 “

ˆ

dµ1

dp

˙pLq

t,m

dp “

ˆ

dv

dm1

˙pLq

t,p,m

dp.

the index pLq denoting that the expressions to which it is affixed refer to the
liquid. (Expressions without such an index will refor to the gas alone or to the
gas and liquid in common.) Again, since the gas is an ideal gas-mixture, the
relation between p1 and µ1 is the same as if the component S1 existed by itself
at the same temperature, and therefore by (268)

dµ1 “ a1td log p1

Therefore

a1td log p1 “

ˆ

dv

dm1

˙pLq

t,p,m

dp. (285)

∗ This result has been given by Lord Rayleigh (Phil. Mag., vol. xlix., 1875, p. 311). It will be observed
that equation (279) might be deduced immediately from this principle in connection with equation (260)
which expresses the properties ordinarily assumed for perfect gases.
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This may be integrated at once if we regard the differential coefficient in the
second member as constant, which will be a very close approximation. We
may obtain a result more simple, but not quite so accurate, if we write the
equation in the form

dp1 “ γ1

ˆ

dv

dm1

˙pLq

t,p,m

dp, (286)

where γ1 denotes the density of the component S1 in the gas, and integrate
regarding this quantity also as constant. This will give

p1 ´ p1
1 “ γ1

ˆ

dv

dm1

˙pLq

t,p,m

pp ´ p1q , (287)

where p1
1 and p1 denote the values of p1 and p when the insoluble component of

the gas is entirely wanting. It will be observed that p´p1 is nearly equal to the
pressure of the insoluble component, in the phase of the gas-mixture to which
p1 relates. S1 is not necessarily the only common component of the gas and
liquid. If there are others, we may find the increase of the part of the pressure
in the gas-mixture belonging to any one of them by equations differing from
the last only in the subscript numerals.

Let us next consider the effect of a gas which is absorbed to some extent,
and which must therefore in strictness be regarded as a component of the
liquid. We may commence by considering in general the equilibrium of a
gas-mixture of two components S1 and S2 with a liquid formed of the same
components. Using a notation like the previous, we shall have by (98) for
constant temperature,

dp “ γ1dµ1 ` γ2dµ2,

and
dp “ γ

pLq

1 dµ1 ` γ
pLq

2 dµ2;

whence
´

γ
pLq

1 ´ γ1

¯

dµ1 “

´

γ2 ´ γ
pLq

2

¯

dµ2

Now if the gas is an ideal gas-mixture,

dµ1 “
a1t

p1
dp1 “

dp1
γ1
, and dµ2 “

a2t

p2
dp2 “

dp2
γ2
,

therefore
˜

γ
pLq

1

γ1
´ 1

¸

dp1 “

˜

1 ´
γ

pLq

2

γ2

¸

dp2.

We may now suppose that S1 is the principal component of the liquid, and
S2 is a gas which is absorbed in the liquid to a slight extent. In such cases it
is well known that the ratio of the densities of the substance S2 in the liquid
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and in the gas is for a given temperature approximately constant. If we denote
this constant by A, we shall have

˜

γ
pLq

1

γ1
´ 1

¸

dp1 “ p1 ´ Aqdp2. (289)

It would be easy to integrate this equation regarding γ1 as variable, but as the
variation in the value of p1 is necessarily very small we shall obtain sufficient
accuracy if we regard γ1 as well as γpLq

1 as constant. We shall thus obtain
˜

γ
pLq

1

γ1
´ 1

¸

pp1 ´ p1
1q “ p1 ´ Aqp2, (290)

where p1
1 denotes the pressure of the saturated vapor of the pure liquid con-

sisting of S1. It will be observed that when A “ 1, the presence of the gas S2

will not affect the pressure or density of the gas S2. When A ă 1, the pressure
and density of the gas S1 are greater than if S2 were absent, and when A ą 1,
the reverse is true.

The properties of an ideal gas-mixture (according to the definition which
we have assumed) when in equilibrium with liquids or solids have been devel-
oped at length, because it is only in respect to these properties that there is
any variation from the properties usually attributed to perfect gases. As the
pressure of a gas saturated with vapor is usually given as a little less than the
sum of the pressure of the gas calculated from its density and that of satu-
rated vapor in a space otherwise empty, while our formula would make it a
little more, when the gas is insoluble, it would appear that in this respect our
formula are less accurate than the rule which would make the pressure of the
gas saturated with vapor equal to the sum of the two pressures mentioned.
Yet the reader will observe that the magnitude of the quantities concerned is
not such that any stress can be laid upon this circumstance.

It will also be observed that the statement of Dalton’s law which we have
adopted, while it serves to complete the theory of gas-mixtures (with respect
to a certain class of properties), asserts nothing with reference to any solid or
liquid bodies. But the common rule that the density of a gas necessary for
equilibrium with a solid or liquid is not altered by the presence of a different gas
which is not absorbed by the solid or liquid, if construed strictly, will involve
consequences in regard to solids and liquids which are entirely inadmissible. To
show this, we will assume the correctness of the rule mentioned. Let S1 denote
the common component of the gaseous and liquid or solid masses, and S2 the
insoluble gas, and let quantities relating to the gaseous mass be distinguished
when necessary by the index (G), and those relating to the liquid or solid by
the index (L). Now while the gas is in equilibrium with the liquid or solid,
let the quantity which it contains of S2 receive the increment dm2, its volume
and the quantity which it contains of the other component, as well as the
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temperature, remaining constant. The potential for S1 in the gaseous mass
will receive the increment

ˆ

dµ1

dm2

˙pGq

t,v,m

dm2

and the pressure will receive the increment
ˆ

dp

dm2

˙pGq

t,v,m

dm2.

Now the liquid or solid remaining in equilibrium with the gas must experience
the same variations in the values of µ1 and p. But by (272)

ˆ

dµ1

dp

˙pLq

t,m

“

ˆ

dv

dm1

˙pLq

t,p,m

.

Therefore,

ˆ

dv

dm1

˙pLq

t,p,m

“

ˆ

dµ1

dm2

˙pGq

t,v,m
ˆ

dp

dm2

˙pGq

t,v,m

.

It will be observed that the first member of this equation relates solely to the
liquid or solid, and the second member solely to the gas. Now we may suppose
the same gaseous mass to be capable of equilibrium with several different
liquids or solids, and the first member of this equation must therefore have
the same value for all such liquids or solids; which is quite inadmissible. In
the simplest case, in which the liquid or solid is identical in substance with
the vapor which it yields, it is evident that the expression in question denotes
the reciprocal of the density of the solid or liquid. Hence, when the gas is in
equilibrium with one of its components both in the solid and liquid states (as
when a moist gas is in equilibrium with ice and water), it would be necessary
that the solid and liquid should have the same density.

The foregoing considerations appear sufficient to justify the definition of an
ideal gas-mixture which we have chosen. It is of course immaterial whether we
regard the definition as expressed by equation (273), or by (279), or by any
other fundamental equation which can be derived from these.

The fundamental equations for an ideal gas-mixture corresponding to (255),
(265), and (271) may easily be derived from these equations by using inversely
the substitutions given on page 105. They are

ÿ

1
pc1m1q log

ε ´
ÿ

1
pE1m1q

ÿ

1
pc1m1q

“ η `
ÿ

1

´

a1m1 log
m1

v
´ H1m1

¯

, (291)
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ÿ

1
pc1m1 ` a1m1q log

χ ´
ÿ

1
pE1m1q

ÿ

1
pc1m1 ` a1m1q

“ η `
ÿ

1

¨

˝a1m1 log
pm1

ÿ

1
pa1m1q

´ H1m1

˛

‚,

(292)

ζ “
ÿ

1
pE1m1 ` m1t pc1 ` a1 ´ H1qq

´
ÿ

1
pc1m1 ` a1m1q t log t `

ÿ

1

¨

˝a1m1t log
pm1

ÿ

1
pa1m1q

˛

‚.
(293)

The components to which the fundamental equations (273), (279). (291),
(292), (293) refer, may themselves be gas-mixtures. We may for example apply
the fundamental equations of a binary gas-mixture to a mixture of hydrogen
and air, or to any ternary gas-mixture in which the proportion of two of the
components is fixed. In fact, the form of equation (279) which applies to a
gas-mixture of any particular number of components may easily be reduced,
when the proportions of some of these components are fixed, to the form which
applies to a gas-mixture of a smaller number of components. The necessary
substitutions will be analogous to those given on page 105. But the components
must be entirely different from one another with respect to the gases of which
they are formed by mixture. We cannot, for example, apply equation (279) to
a gas-mixture in which the components are oxygen and air. It would indeed
be easy to form a fundamental equation for such a gas-mixture with reference
to the designated gases as components. Such an equation might be derived
from (279) by the proper substitutions. But the result would be an equation
of more complexity than (279). A chemical compound, however, with respect
to Dalton’s law, and with respect to all the equations which have been given,
is to be regarded as entirely different from its components. Thus, a mixture
of hydrogen, oxygen, and vapor of water is to be regarded as a ternary gas-
mixture, having the three components mentioned. This is certainly true when
the quantities of the compound gas and of its components are all independently
variable in the gas-mixture, without change of temperature or pressure. Cases
in which these quantities are not thus independently variable will be considered
hereafter.

Inferences in regard to Potentials in Liquids and Solids.

Such equations as (264), (268), (276), by which the values of potentials in pure
or mixed gases may be derived from quantities capable of direct measurement,
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have an interest which is not confined to the theory of gases. For as the poten-
tials of the independently variable components which are common to coexistent
liquid and gaseous masses have the same values in each, these expressions will
generally afford the means of determining for liquids, at least approximately,
the potential for any independently variable component which is capable of
existing in the gaseous state. For although every state of a liquid is not such
as can exist in contact with a gaseous mass, it will always be possible, when
any of the components of the liquid are volatile, to bring it by a change of
pressure alone, its temperature and composition remaining unchanged, to a
state for which there is a coexistent phase of vapor, in which the values of the
potentials of the volatile components of the liquid may be estimated from the
density of these substances in the vapor. The variations of the potentials in
the liquid due to the change of pressure will in general be quite trifling as com-
pared with the variations which are connected with changes of temperature or
of composition, and may moreover be readily estimated by means of equation
(272 ). The same considerations will apply to volatile solids with respect to
the determination of the potential for the substance of the solid.

As an application of this method of determining the potentials in liquids,
let us make use of the law of Henry in regard to the absorption of gases by
liquids to determine the relation between the quantity of the gas contained in
any liquid mass and its potential. Let us consider the liquid as in equilibrium
with the gas, and let mpGq

1 denote the quantity of the gas existing as such,
m

pLq

1 the quantity of the same substance contained in the liquid mass, µ1 the
potential for this substance common to the gas and liquid, vpGq and vpLq the
volumes of the gas and liquid. When the absorbed gas forms but a very small
part of the liquid mass, we have by Henry’s law

m
pLq

1

vpLq
“ A

m
pGq

1

vpGq
(294)

where A is a function of the temperature; and by (276)

µ1 “ B ` C log
m

pGq

1

vpGq
, (295)

B and C also denoting functions of the temperature. Therefore

µ1 “ B ` C log
m

pLq

1

AvpLq
. (296)

It will be seen (if we disregard the difference of notation) that this equation
is equivalent in form to (216), which was deduced from a priori considera-
tions as a probable relation between the quantity and the potential of a small
component. When a liquid absorbs several gases at once, there will be several
equations of the form of (296), which will hold true simultaneously, and which
we may regard as equivalent to equations (217), (218). The quantities A and
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C in (216), with the corresponding quantities in (217), (218), were regarded as
functions of the temperature and pressure, but since the potentials in liquids
are but little affected by the pressure, we might anticipate that these quanti-
ties in the case of liquids might be regarded as functions of the temperature
alone.

In regard to equations (216), (217), (218), we may now observe that by (264)
and (276) they are shown to hold true in ideal gases or gas-mixtures, not only
for components which form only a small part of the whole gas-mixture, but
without any such limitation, and not only approximately but absolutely. It is
noticeable that in this case quantities A and C are functions of the temperature
alone, and do not even depend upon the nature of the gaseous mass, except
upon the particular component to which they relate. As all gaseous bodies are
generally supposed to approximate to the laws of ideal gases when sufficiently
rarefied, we may regard these equations as approximately valid for gaseous
bodies in general when the density is sufficiently small. When the density of
the gaseous mass is very great, but the separate density of the component in
question is small, the equations will probably hold true, but the values of A and
C may not be entirely independent of the pressure, or of the composition of the
mass in respect to its principal components. These equations will also apply,
as we have just seen, to the potentials in liquid bodies for components of which
the density in the liquid is very small, whenever these components exist also
in the gaseous state, and conform to the law of Henry. This seems to indicate
that the law expressed bo these equations has a very general application.

Considerations relating to the Increase of Entropy due
to the Mixture of Gases by Diffusion.

From equations (278) we may easily calculate the increase of entropy which
takes place when two different gases are mixed by diffusion, at a constant
temperature and pressure. Let us suppose that the quantities of the gases are
such that each occupies initially one half of the total volume. If we denote this
volume by V , the increase of entropy will be

m1a1 log V ` m2a2 log V ´ m1a1 log
V

2
´ m2a2 log

V

2
,

or
pm1a1 ` m2a2q log 2.

Now
m1a1 “

pV

2t
, and m2a2 “

pV

2t
.

Therefore the increase of entropy may be represented by the expression
pV

t
log 2
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It is noticeable that the value of this expression does not depend upon the
kinds of gas which are concerned, if the quantities are such as has been sup-
posed, except that the gases which are mixed must be of different kinds. If we
should bring into contact two masses of the same kind of gas, they would also
mix, but there would be no increase of entropy. But in regard to the relation
which this case bears to the preceding, we must bear in mind the following
considerations. When we say that when two different gases mix by diffusion,
as we have supposed, the energy of the whole remains constant, and the en-
tropy receives a certain increase, we mean that the gases could be separated
and brought to the same volume and temperature which they had at first by
means of certain changes in external bodies, for example, by the passage of
a certain amount of heat from a warmer to a colder body. But when we say
that when two gas-masses of the same kind are mixed under similar circum-
stances there is no change of energy or entropy, we do not mean that the gases
which have been mixed can be separated without change to external bodies.
On the contrary, the separation of the gases is entirely impossible. We call
the energy and entropy of the gas-masses when mixed the same as when they
were unmixed, because we do not recognize any difference in the substance of
the two masses. So when gases of different kinds are mixed, if we ask what
changes in external bodies are necessary to bring the system to its original
state, we do not mean a state in which each particle shall occupy more or
less exactly the same position as at some previous epoch, but only a state
which shall be undistinguishable from the previous one in its sensible proper-
ties. It is to states of systems thus incompletely defined that the problems of
thermodynamics relate.

But if such considerations explain why the mixture of gas-masses of the
same kind stands on a different footing from the mixture of gas-masses of
different kinds, the fact is not less significant that the increase of entropy due
to the mixture of gases of different kinds, in such a case as we have supposed,
is independent of the nature of the gases.

Now we may without violence to the general laws of gases which are em-
bodied in our equations suppose other gases to exist than such as actually do
exist, and there does not appear to be any limit to the resemblance which there
might be between two such kinds of gas. But the increase of entropy due to the
mixing of given volumes of the gases at a given temperature and pressure would
be independent of the degree of similarity or dissimilarity between them. We
might also imagine the case of two gases which should be absolutely identical
in all the properties (sensible and molecular) which come into play while they
exist as gases either pure or mixed with each other, but which should differ in
respect to the attractions between their atoms and the atoms of some other
substances, and therefore in their tendency to combine with such substances.
In the mixture of such gases by diffusion an increase of entropy would take
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place, although the process of mixture, dynamically considered, might be ab-
solutely identical in its minutest details (even with respect to the precise path
of each atom) with processes which might take place without any increase of
entropy. In such respects, entropy stands strongly contrasted with energy.
Again, when such gases have been mixed, there is no more impossibility of the
separation of the two kinds of molecules in virtue of their ordinary motions
in the gaseous mass without any especial external influence, than there is of
the separation of a homogeneous gas into the same two parts into which it
has once been divided, after these have once been mixed. In other words, the
impossibility of an uncompensated decrease of entropy seems to be reduced to
improbability.

There is perhaps no fact in the molecular theory of gases so well established
as that the number of molecules in a given volume at a given temperature and
pressure is the same for every kind of gas when in a state to which the laws of
ideal gases apply. Hence the quantity pV

t
in (297) must be entirely determined

by the number of molecules which are mixed. And the increase of entropy is
therefore determined by the number of these molecules and is independent of
their dynamical condition and of the degree of difference between them.

The result is of the same nature when the volumes of the gases which are
mixed are not equal, and when more than two kinds of gas are mixed. If we
denote by v1, v2, etc., the initial volumes of the different kinds of gas, and by
V as before the total volume, the increase of entropy may be written in the
form

ÿ

1
pm1a1q log V ´

ÿ

1
pm1a1 log v1q .

And if we denote by r1, r2, etc., the numbers of the molecules of the several
different kinds of gas, we shall have

r1 “ Cm1a1, r2 “ Cm2a1, etc.
where C denotes a constant. Hence

v1 : V :: m1a1 :
ÿ

1
pm1a1q :: r1 :

ÿ

1
r1;

and the increase of entropy may be written
ÿ

1
r1 log

ÿ

1
r1 ´

ÿ

1
pr1 log r1q

C
. (298)

The Phases of Dissipated Energy of an Ideal Gas-mixture
with Components which are Chemically Related.

We will now pass to the consideration of the phases of dissipated energy (see
page 88) of an ideal gas-mixture, in which the number of the proximate com-
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ponents exceeds that of the ultimate.
Let us first suppose that an ideal gas-mixture has for proximate components

the gases G1, G2, and G3, the units of which are denoted by S1,S2,S3, and
that in ultimate analysis

S3 “ λ1S1 ` λ2S2, (299)

λ1 and λ2 denoting positive constants, such that λ1 ` λ2 “ 1. The phases
which we are to consider are those for which the energy of the gas-mixture is a
minimum for constant entropy and volume and constant quantities of G1 and
G2, as determined in ultimate analysis. For such phases, by (86),

µ1δm1 ` µ2δm2 ` µ3δm3 ŕ 0 (300)

for such values of the variations as do not affect the quantities of G1 and G2 as
determined in ultimate analysis. Values of δm1, δm2, δm3 proportional to λ1,
λ2,´1, and only such, are evidently consistent with this restriction: therefore

λ1µ1 ` λ2µ2 “ µ3. (301)

If we substitute in this equation values of µ1, µ2, µ3 taken from (276), we
obtain, after arranging the terms and dividing by t,

λ1a1 log
m1

v
` λ2a2 log

m2

v
´ a3 log

m3

v
“ A ` B log t ´

C

t
, (302)

where

A “ λ1H1 ` λ2H2 ´ H3 ´ λ1c1 ´ λ2c2 ` c3 ´ λ1a1 ´ λ2a2 ` a3, (303)

B “ λ1c1 ` λ2c2 ´ c3, (304)

C “ λ1E1 ` λ2E2 ´ E3. (305)

If we denote by β1 and β2 the volumes (determined under standard condi-
tions of temperature and pressure) of the quantities of the gases G1 and G2

which are contained in a unit of volume of the gas G3, we shall have

β1 “
λ1a1
a3

, and β2 “
λ2a2
a3

, (306)

and (302) will reduce to the form

log
mβ1

1 m
β2
2

m3vβ1`β2´1
“
A

a3
`
B

a3
log t ´

C

a3t
. (307)
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Moreover, as by (277)

pv “ pa1m1 ` a2m2 ` a3m3q t,

we have on eliminating v

log
mβ1

1 m
β2
2 p

β1`β2´1

m3 pa1m1 ` a2m2 ` a3m3q
β1`β2´1

“
A

a3
`
B1

a3
log t ´

C

a3t
,

where
B1 “ λ1c1 ` λ2c2 ´ c3 ` λ1a1 ` λ2a2 ´ a3. (310)

It will be observed that the quantities β1, β2 will always be positive and
have a simple relation to unity, and that the value of β1 ` β2 ´ 1 will be
positive or zero, according as gas G3 is formed of G1 and G2 with or without
condensation. If we should assume, according to the rule often given for the
specific heat of compound gases, that the thermal capacity at constant volume
of any quantity of the gas G3 is equal to the sum of the thermal capacities of
the quantities which it contains of the gases G1 and G2, the value of B would
be zero. The heat evolved in the formation of a unit of the gas G3 out of the
gases G1 and G2, without mechanical action, is by (283) and (257)

λ1 pc1t ` E1q ` λ2 pc2t ` E2q ´ pc3t ` E3q ,

or
Bt ` C,

which will reduce to C when the above relation in regard to the specific heats
is satisfied. In any case the quantity of heat thus evolved divided by a3t2 will
be equal to the differential coefficient of the second member of equation (307)
with respect to t. Moreover, the heat evolved in the formation of a unit of the
gas G3 out of the gases G1 and G2 under constant pressure is

Bt ` C ` λ1a1t ` λ2a2t ´ a3t “ B1t ` C,

which is equal to the differential coefficient of the second member of (309) with
respect to t, multiplied by α3t

2.
It appears by (307) that, except in the case when β1 ` β2 “ 1, for any

given finite values of m1,m2,m3, and t (infinitesimal values being excluded as
well is infinite), it will always be possible to assign such a finite value to v
that the mixture shall be in a state of dissipated energy. Thus, if we regard a
mixture of hydrogen oxygen, and vapor of water as an ideal gas-mixture, for
a mixture containing any given quantities of these three gases at any given
temperature there will be a certain volume at which the mixture will be in a
state of dissipated energy. In such a state no such phenomenon as explosion
will be possible, and no formation of water by the action of platinum. (If
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the mass should be expanded beyond this volume, the only possible action
of a catalytic agent would be to resolve the water into its components.) It
may indeed be true that at ordinary temperatures, except when the quantity
either of hydrogen or of oxygen is very small compared with the quantity of
water, the state of dissipated energy is one of such extreme rarefaction as to tie
entirely beyond our power of experimental verification. It is also to be noticed
that a state of great rarefaction is so unfavorable to any condensation of the
gases, that it is quite probable that the catalytic action of platinum may cease
entirely at a degree of rarefaction far short of what is necessary for a state
of dissipated energy. But with respect to the theoretical demonstration, such
states of great rarefaction are precisely those to which we should suppose that
the laws of ideal gas-mixtures would apply most perfectly.

But when the compound gas G3 is formed of G1 and G2 without condensa-
tion (i.e., when β1 ` β2 “ 1 ), it appears from equation (307) that the relation
between m1,m2, and m3 which is necessary for a phase of dissipated energy is
determined by the temperature alone.

In any case, if we regard the total quantities of the gases G1 and G2 (as
determined by the ultimate analysis of the gas-mixture), and also the volume,
as constant, the quantities of these gases which appear uncombined in a phase
of dissipated energy will increase with the temperature, if the formation of the
compound G3 without change of volume is attended with evolution of heat.
Also, if we regard the total quantities of the gases G1 and G2, and also the
pressure, as constant, the quantities of these gases which appear uncombined
in a phase of dissipated energy, will increase with the temperature, if the for-
mation of the compound G3 under constant pressure is attended with evolution
of heat. If B “ 0 (a case, as has been seen, of especial importance), the heat
obtained by the formation of a unit of G3 out of G1 and G2 without change
of volume or of temperature will be equal to C. If this quantity is positive,
and the total quantities of the gases G1 and G2 and also the volume have
given finite values, for an infinitesimal value of t we shall have (for a phase
of dissipated energy) an infinitesimal value either of m1 or of m2, and for an
infinite value of t we shall have finite (neither infinitesimal nor infinite) values
of m1,m2, and m3. But if we suppose the pressure instead of the volume to
have a given finite value (with suppositions otherwise the same), we shall have
for infinitesimal values of t an infinitesimal value either of m1 or m2, and for
infinite values of t finite or infinitesimal values of m3 according as β1 ` β2 is
equal to or greater than unity.

The case which we have considered is that of a ternary gas-mixture, but our
results may easily be generalized in this respect. In fact, whatever the number
of component gases in a gas-mixture, if there are relations of equivalence in
ultimate analysis between these components, such relations may be expressed
by one or more equations of the form

λ1S1 ` λ2S2 ` λ3S3 ` etc. “ 0, (311)
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where S1,S2, etc. denote the units of the various component gases, and λ1, λ2,
etc. denote positive or negative constants such that

ÿ

1
λ1 “ 0. From (311)

with (86) we may derive for phases of dissipated energy,

λ1µ1 ` λ2µ2 ` λ3µ3 ` etc. “ 0,

or
ÿ

1
pλ1µ1q “ 0. (312)

Hence, by (276),
ÿ

1

´

λ1a1 log
m1

v

¯

“ A ` B log t ´
C

t
, (313)

where A,B and C are constants determined by the equations

A “
ÿ

1
pλ1H1 ´ λ1c1 ´ λ1a1q , (314)

B “
ÿ

1
pλ1c1q , (315)

C “
ÿ

I

pλ1E1q . (316)

Also, since
pv “

ÿ

1
pa1m1q t,

ÿ

1
pλ1a1 logm1q ´

ÿ

pλ1a1q log
ÿ

1
pa1m1q

`
ÿ

pλ1a1q log p “ A ` B1 log t ´
C

t
,

(317)

where
B1 “

ÿ

1
pλ1c1 ` λ1a1q . (318)

If there is more than one equation of the form (311), we shall have more than
one of each of the forms (313) and (317), which will hold true simultaneously
for phases of dissipated energy.

It will be observed that the relations necessary for a phase of dissipated
energy between the volume and temperature of an ideal gas-mixture, and the
quantities of the components which take part in the chemical processes, and
the pressure due to these components, are not affected by the presence of
neutral gases in the gas-mixture.

From equations (312) and (234) it follows that if there is a phase of dis-
sipated energy at any point in an ideal gas-mixture in equilibrium under the
influence of gravity, the whole gas-mixture must consist of such phases.

The equations of the phases of dissipated energy of a binary gas-mixture,
the components of which are identical in substance, are comparatively simple
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in form. In this case the two components have the same potential, and if
we write β for a1

a2
(the ratio of the volumes of equal quantities of the two

components under the same conditions of temperature and pressure), we shall
have

log
mβ

2

m2vβ´1
“
A

a2
`
B

a2
log t ´

C

a2t
, (319)

log
mβ

1p
β´1

m2 pa1m1 ` a2m2q
β´1

“
A

a2
`
B1

a2
log t ´

C

a2t
; (320)

A “ H1 ´ H2 ´ c1 ` c2 ´ a1 ` a2, (321)

B “ c1 ´ c2, B1 “ c1 ´ c2 ` a1 ´ a2, (322)

C “ E1 ´ E2. (323)

Gas-mixtures with Convertible Components.

The equations of the phases of dissipated energy of ideal gas-mixtures which
have components of which some are identical in ultimate analysis to others
have an especial interest in relation to the theory of gas-mixtures in which the
components are not only thus equivalent, but are actually transformed into
each other within the gas-mixture on variations of temperature and pressure,
so that quantities of these (proximate) components are entirely determined, at
least in any permanent phase of the gas-mixture, by the quantities of a smaller
number of ultimate components, with the temperature and pressure. Such
gas-mixtures may be distinguished as having convertible components. The
very general considerations adduced on pages 86-92, which are not limited in
their application to gaseous bodies, suggest the hypothesis that the equations
of the phases of dissipated energy of ideal gas-mixtures may apply to such
gas-mixtures as have been described. It will, however, be desirable to consider
the matter more in detail.

In the first place, if we consider the case of a gas-mixture which only differs
from an ordinary ideal gas-mixture for which some of the components are
equivalent in that there is perfect freedom in regard to the transformation of
these components, it follows at once from the general formula of equilibrium
(1) or (2) that equilibrium is only possible for such phases as we have called
phases of dissipated energy, for which some of the characteristic equations have
been deduced in the preceding pages.

If it should be urged, that regarding a gas-mixture which has convertible
components as an ideal gas-mixture of which, for some reason, only a part of
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the phases are actually capable of existing, we might still suppose the partic-
ular phases which alone can exist to be determined by some other principle
than that of the free convertibility of the components (as if, perhaps, the case
were analogous to one of constraint in mechanics), it may easily be shown that
such a hypothesis is entirely untenable, when the quantities of the proximate
components may be varied independently by suitable variations of the tem-
perature and pressure, and of the quantities of the ultimate components, and
it is admitted that the relations between the energy, entropy, volume, tem-
perature, pressure, and the quantities of the several proximate components in
the gas-mixture are the same as for an ordinary ideal gas-mixture, in which
the components are not convertible. Let us denote the quantities of the n1

proximate components of a gas-mixture A by m1,m2, etc., and the quantities
of its n ultimate components by m1,m2, etc. (n denoting a number less than
n1), and let us suppose that for this gas-mixture the quantities ε, η, v, t, p,m1,
m2, etc. satisfy the relations characteristic of an ideal gas-mixture, while the
phase of the gas-mixture is entirely determined by the values of m1,m2, etc.
with two of the quantities ε, η, v, t, p. We may evidently imagine such an ideal
gas-mixture B having n1 components (not convertible), that every phase of A
shall correspond with one of B in the values of ε, η, v, t, p,m1,m2, etc. Now
let us give to the quantities m2, m2, etc. in the gas-mixture A any fixed val-
ues, and for the body thus defined let us imagine the v-η-ε surface (see page
64) constructed; likewise for the ideal gas-mixture B let us imagine the v-η-ε
surface constructed for every set of values of m1,m2, etc. which is consistent
with the given values of m1,m2, etc., i.e., for every body of which the ulti-
mate composition would be expressed by the given values of m1,m2, etc. It
follows immediately from our supposition, that every point in the v-η-ε sur-
face relating to A must coincide with some point of one of the v-η-ε surfaces
relating to B not only in respect to position but also in respect to its tangent
plane (which represents temperature and pressure); therefore the v-η-ε surface
relating to A must be tangent to the various v-η-ε surfaces relating to B, and
therefore must be an envelop of these surfaces. From this it follows that the
points which represent phases common to both gas-mixtures must represent
the phases of dissipated energy of the gas-mixture B.

The properties of an ideal gas-mixture which are assumed in regard to
the gas-mixture of convertible components in the above demonstration are
expressed by equations (277) and (278) with the equation

ε “
ÿ

1
pc1m1t ` m1E1q . (324)

It is usual to assume in regard to gas-mixtures having convertible components
that the convertibility of the components does not affect the relations (277)
and (324). The same cannot be said of the equation (278). But in a very
important class of cases it will be sufficient if the applicability of (277) and
(324) is admitted. The cases referred to are those in which in certain phases of
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a gas-mixture the components are convertible, and in other phases of the same
proximate composition the components are not convertible, and the equations
of an ideal gas-mixture hold true.

If there is only a single degree of convertibility between the components
(i.e., if only a single kind of conversion, with its reverse, can take place among
the components), it will be sufficient to assume, in regard to the phases in
which conversion takes place, the validity of equation (277) and of the follow-
ing, which can be derived from (324) by differentiation, and comparison with
equation (11), which expresses a necessary relation,

”

tdη ´ pdv ´
ÿ

1
pc1m1q dt

ı

m
“ 0.∗ (325)

We shall confine our demonstration to this case. It will be observed that the
physical signification of (325) is that if the gas-mixture is subjected to such
changes of volume and temperature as do not alter its proximate composition,
the heat absorbed or yielded may be calculated by the same formula as if the
components were not convertible.

Let us suppose the thermodynamic state of a gaseous mass M , of such a
kind as has just been described, to be varied while within the limits within
which the components are not convertible. (The quantities of the proximate
components, therefore, as well as of the ultimate, are supposed constant.) If
we use the same method of geometrical representation as before, the point
representing the volume, entropy, and energy of the mass will describe a line
in the v-η-ε surface of an ideal gas-mixture of inconvertible components, the
form and position of this surface being determined by the proximate composi-
tion of M . Let us now suppose the same mass to be carried beyond the limit
of inconvertibility, the variations of state after passing the limit being such as
not to alter its proximate composition. It is evident that this will in general
be possible. Exceptions can only occur when the limit is formed by phases in
which the proximate composition is uniform. The line traced in the region of
convertibility must belong to the same v-η-ε surface of an ideal gas-mixture
of inconvertible components as before, continued beyond the limit of incon-
vertibility for the components of M , since the variations of volume, entropy,
and energy are the same as would be possible if the components were not con-
vertible. But it must also belong to the v-η-ε surface of the body M , which
is here a gas-mixture of convertible components. Moreover, as the inclination
of each of these surfaces must indicate the temperature and pressure of the
phases through which the body passes, these two surfaces must be tangent to
each other along the line which has been traced. As the v-η-ε surface of the
body M in the region of convertibility must thus be tangent to all the surfaces
representing ideal gas-mixtures of every possible proximate composition con-
sistent with the ultimate composition of M , continued beyond the region of

∗ This notation is intended to indicate that m2,m2, etc. are regarded as constant.
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inconvertibility, in which alone their form and position may be capable of ex-
perimental demonstration, the former surface must be an envelop of the latter
surfaces, and therefore a continuation of the surface of the phases of dissipated
energy in the region of inconvertibility.

The foregoing considerations may give a measure of a priori probability
to the results which are obtained by applying the ordinary laws of ideal gas-
mixtures to cases in which the components are convertible. It is only by
experiments upon gases in phases in which their components are convertible
that the validity of any of these results can be established.

The very accurate determinations of density which have been made for the
peroxide of nitrogen enable us to subject some of our equations to a very
critical test. That this substance in the gaseous state is properly regarded as
a mixture of different gases can hardly be doubted, as the proportion of the
components derived from its density on the supposition that one component
has the molecular formula NO2 and the other the formula N2O4 is the same as
that derived from the depth of the color on the supposition that the absorption
of light is due to one of the components alone, and is proportioned to the
separate density of that component.∗

MM. Sainte-Claire Deville and Troost† have given a series of determinations
of what we shall call the relative densities of peroxide of nitrogen at various
temperatures under atmospheric pressure. We use the term relative density
to denote what it is usual in treatises on chemistry to denote by the term
density, viz. the actual density of a gas divided by the density of a standard
perfect gas at the same pressure and temperature, the standard gas being
air, or more strictly, an ideal gas which has the same density as air at the
zero of the centigrade scale and the pressure of one atmosphere. In order to
test our equations by these determinations, it will be convenient to transform
equation (320), so as to give directly the relation between the relative density,
the pressure, and the temperature.

As the density of the standard gas at any given temperature and pressure
may by (263) be expressed by the formula p

ast
, the relative density of a binary

gas-mixture may be expressed by

D “ pm1 ` m2q
ast

pv
. (326)

Now by (263)
a1m1 ` a2m2 “

pv

t
. (327)

By giving to m2 and m1 successively the value zero in these equations, we
obtain

D1 “
as
a1

D2 “
as
a2

∗ Salet, ”Sur la coloratiou du peroryde d’azote,” Comptes Rendus, vol. lxvii. p. 448.
† Comptes Rendus, vol. lxiv. p. 237.
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where D1 and D2 denote the values of D when the gas consists wholly of one
or of the other component. If we assume that

D2 “ 2D1, (329)

we shall have
a1 “ 2a2. (330)

From (326) we have
m1 ` m2 “ D

pv

ast

and from (327), by (328) and (330),

2m1 ` m2 “ D2
pv

ast
“ 2D1

pv

ast1

whence
m1 “ pD2 ´ Dq

pv

ast
, (331)

m2 “ 2 pD ´ D1q
pv

ast
. (332)

By (327), (331), and (332) we obtain from (320)

log
pD2 ´ Dq

2 p

2 pD ´ D1q as
“
A

a2
`
B1

a2
log t ´

C

a2t
. (333)

This formula will be more convenient for purposes of calculation if we introduce
common logarithms (denoted by log10 ) instead of hyperbolic, the temperature
of the ordinary centigrade scale tc instead of the absolute temperature t, and
the pressure in atmospheres pat instead of p the pressure in a rational system
of units. If we also add the logarithm of as to both sides of the equation, we
obtain

log10
pD2 ´ Dq

2 pat

2 pD ´ D1q
“ A `

B

a2
log10 ptc ` 273q ´

C

tc ` 273
, (334)

where A and C denote constants, the values of which are closely connected
with those of A and C.

From the molecular formula of peroxide of nitrogen NO2 and N2O4 we may
calculate the relative densities

D1 “
14 ` 32

2
.0691 “ 1.589, and D2 “

28 ` 64

2
.0691 “ 3.178. (335)

The determinations of MM. Deville and Troost are satisfactorily represented
by the equation

log10
p3.178 ´ Dq2pat

2pD ´ 1.589q
“ 9.47056 ´

3118.6

tc ` 273
(336)
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which gives
D “ 3.178 ` Θ ´

a

Θp3.178 ` Θq.

where
log10 Θ “ 9.47056 ´

3118.6

tc ` 273
´ log10 pat.

In the first part of the following table are given in successive columns the
temperature and pressure of the gas in the several experiments of MM. Deville
and Troost, the relative densities calculated from these numbers by equation
(336), the relative densities as observed, and the difference of the observed
and calculated relative densities. It will be observed that these differences are
quite small, in no case reaching .03, and on the average scarcely exceeding
.01. The significance of such correspondence in favour of the hypothesis by
means of which equation (336) has been established is of course diminished
by the fact that two constants in the equation have been determined from
these experiments. If the same equation can be shown to give correctly the
relative densities at other pressures than that for which the constants have
been determined, such correspondence will be much more decisive.
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tc pat
D calculated
by eq.(336) D observed. diff. Observers.

26.7
35.4
39.8
49.6
60.2
70.0
80.6
90.0
100.1
111.3
121.5
135.0
154.0
183.2

1
1
1
1
1
1
1
1
1
1
1
1
1
1

2.676
2.524
2.443
2.256
2.067
1.920
1.801
1.728
1.676
1.641
1.622
1.607
1.597
1.592

2.65
2.53
2.46
2.27
2.08
1.92
1.80
1.72
1.68
1.65
1.62
1.60
1.58
1.57

´.026
`.006
`.017
`.014
`.013
.000

´.001
´.008
`.004
`.009
´.002
´.007
´.017
´.022

D. & T.
D. & T.
D. & T.
D. & T.
D. & T.
D. & T.
D. & T.
D. & T.
D. & T.
D. & T.
D. & T.
D. & T.
D. & T.
D. & T.

97.5
97.5
24.5
24.5
11.3
11.3
4.2
4.2

1
10450

26397
1
18090

42529
1
9265

44205
1
6023

35438

1.687
1.631
2.711
2.524
2.891
2.620
2.964
2.708

1.783

2.52

2.645

2.588

`.152

´.004

`.025

´.120

P. & W.

P. & W.

P. & W.

P. & W.

Messrs, Playfair and Wanklyn have published∗ four determinations of the
relative density of peroxide of nitrogen at various temperatures when diluted
with nitrogen. Since the relations expressed by equations (319) and (320) are
not affected by the presence of a third gas which is different from the gases G1

and G2 (to which m1 and m2 relate) and neutral to them (see the remark at
the foot of page 120), —provided that we take p to denote the pressure which
we attribute to the gases G1 and G2, i.e., the total pressure diminished by the
pressure which the third gas would exert if occupying alone the same space at
the same temperature, —it follows that the relations expressed for peroxide of
nitrogen by (333), (334), and (336) will not be affected by the presence of free
nitrogen, if the pressure expressed by p or pat and contained implicitly in the
symbol D (see equation (326) by which D is defined) is understood to denote
the total pressure diminished by the pressure due to the free nitrogen. The
determinations of Playfair and Wanklyn are given in the latter part of the above
table. The pressures given are those obtained by subtracting the pressure due

∗ Transactions of the Royal Society of Edinburgh, vol. xxii. p. 441.
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to the free nitrogen from the total pressure. We may suppose such reduced
pressures to have been used in the reduction of the observations by which the
numbers in the column of observed relative densities were obtained. Besides
the relative densities calculated by equation (336) for the temperatures and
(reduced) pressures of the observations, the table contains the relative densities
calculated for the same temperatures and the pressure of one atmosphere.

The reader will observe that in the second and third experiments of Playfair
and Wanklyn there is a very close accordance between the calculated and
observed values of D2 while in the second and fourth experiments there is
a considerable difference. Now the weight to be attributed to the several
determinations is very different. The quantities of peroxide of nitrogen which
were used in the several experiments were respectively .2410, .5893, .3166, and
.2016 grammes. For a rough approximation, we may assume that the probable
errors of the relative densities are inversely proportional to these numbers. This
would make the probable error of the first and fourth observations two or three
times as great as that of the second and considerably greater than that of the
third. We must also observe that in the first of these experiments, the observed
relative density 1.783 is greater than 1.687, the relative density calculated by
equation (336) for the temperature of the experiment and the pressure of one
atmosphere. Now the number 1.687 we may regard as established directly by
the experiments of Deville and Troost. For in seven successive experiments in
this part of the series the calculated relative densities differ from the observed
by less than .01. If then we accept the numbers given by experiment, the effect
of diluting the gas with nitrogen is to increase its relative density. As this result
is entirely at variance with the facts observed in the case of other gases, and
in the case of this gas at lower temperatures, as appears from the three other
determinations of Playfair and Wanklyn, it cannot possibly be admitted on
the strength of a single observation. The first experiment of this series cannot
therefore properly be used as a test of our equations. Similar considerations
apply with somewhat less force to the last experiment. By comparing the
temperatures and pressures of the three last experiments with the observed
relative densities, the reader may easily convince himself that if we admit the
substantial accuracy of the determinations in the two first of these experiments
(the second and third of the series, which have the greatest weight) the last
determination of relative density 2.588 must be too small. In fact, it should
evidently be greater than the number in the preceding experiment 2.645.

If we continue our attention to the second and third experiments of the
series, the agreement is as good as could be desired. Nor will the admission of
errors of .152 and .120 (certainly not large in determinations of this kind) in
the first and fourth experiments involve any serious doubt of the substantial
accuracy of the second and third, when the difference of weight of the determi-
nations is considered. Yet it is much to be desired that the relation expressed
by (336), or with more generality by (334), should be tested by more numerous
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experiments.
It should be stated that the numbers in the column of pressures are not quite

accurate. In the experiments of Deville and Troost the gas was subject to the
actual atmospheric pressure at the time of the experiment. This varied from
747 to 764 millimeters of mercury. The precise pressure for each experiment is
not given. In the experiments of Playfair and Wanklyn the mixture of nitrogen
and peroxide of nitrogen was subject to the actual atmospheric pressure at the
time of the experiment. The numbers in the column of pressures express the
fraction of the whole pressure which remains after subtracting the part due to
the free nitrogen. But no indication is given in the published account of the
experiments in regard to the height of the barometer. Now it may easily be
shown that a variation of 13

760
in the value of p can in no case cause a variation

of more than .005 in the value of D as calculated by equation (336). In any of
the experiments of Playfair and Wanklyn a variation of more than 30mm in the
height of the barometer would be necessary to produce a variation of .01 in
the value of D. The errors due to this source cannot therefore be very serious.
They might have been avoided altogether in the discussion of the experiments
of Deville and Troost by using instead of (336) a formula expressing the relation
between the relative density, the temperature, and the actual density, as the
reciprocal of the latter quantity is given for each experiment of this series. It
seemed best, however, to make a trifling sacrifice of accuracy for the sake of
simplicity.

It might be thought that the experiments under discussion would be better
represented by a formula in which the term containing log t (see equation (333))
was retained. But an examination of the figures in the table will show that
nothing important can be gained in this respect, and there is hardly sufficient
motive for adding another term to the formula of calculation. Any attempt
to determine the real values of A,B1 and C in equation (333) (assuming the
absolute validity of such an equation for peroxide of nitrogen), from the ex-
periments under discussion would be entirely misleading, as the reader may
easily convince himself.

From equation (336), however, the following conclusions may be deduced.
By comparison with (334) we obtain

A `
B1

a2
log10 t ´

C

t
“ 9.47056 ´

3118.6

t
,

which must hold true approximately between the temperatures 11C and 90C .
(At higher temperatures the relative densities vary too slowly with the tem-
peratures to afford a critical test of the accuracy of this relation.) By differ-
entiation we obtain

MB1

a2t
`

C

t2
“

3118.6

t2
,

where M denotes the modulus of the common system of logarithms. Now by
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comparing equations (333) and (334) we see that

C “
MC

a2
“ .43429

C

a2
.

Hence
B1t ` C “ 7181a2 “ 3590a1,

which may be regarded as a close approximation at 40C or 50C , and a tolera-
ble approximation between the limits of temperature above mentioned. Now
B1t ` C represents the heat evolved by the conversion of a unit of NO2 into
N2O4 under constant pressure. Such conversion cannot take place at constant
pressure without change of temperature, which renders the experimental ver-
ification of the last equation less simple. But since by equations (322)

B1 “ B ` a1 ´ a2 “ B `
1

2
a1,

we shall have for the temperature of 40C

Bt ` C “ 3434a1.

NowBt`C represents the decrease of energy when a unit of NO2 is transformed
into N2O4 without change of temperature. It therefore represents the excess
of the heat evolved over the work done by external forces when a mass of
the gas is compressed at constant temperature until a unit of NO2 has been
converted into N2O4. This quantity will be constant if B “ 0, i.e., if the specific
heats at constant volume of NO2 and N2O4 are the same. This assumption
would be more simple from a theoretical stand-point and perhaps safer than
the assumption that B1 “ 0. If B “ 0, B1 “ a2. If we wish to embody this
assumption in the equation between D, p, and t, we may substitute

6.5228 ` log10 ptc ` 273q ´
2977.4

tc ` 273

for the second member of equation (336). The relative densities calculated
by the equation that modified from the temperatures and pressures of the
experiments under discussion will not differ from those calculated from the
unmodified equation by more than .002 in any case, or by more then .001 in
the first series of experiments.

It is to be noticed that if we admit the validity of the volumetrical rela-
tion expressed by equation (333), which is evidently equivalent to an equation
between p, t, v, and m (this letter denoting the quantity of the gas without
reference to its molecular condition), or if we admit the validity of the equa-
tion only between certain limits of temperature and for densities less than a
certain limit of density, and also admit that between the given limits of tem-
perature the specific heat of the gas at constant volume may be regarded as a
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constant quantity when the gas is sufficiently rarefied to be regarded as con-
sisting wholly of NO2, —or, to speak without reference to the molecular state
of the gas, when it is rarefied until its relative density D approximates to its
limiting value D1, —we must also admit the validity (within the same limits
of temperature and density) of all the calorimetrical relations which belong to
ideal gas-mixtures with convertible components. The premises are evidently
equivalent to this, —that we may imagine an ideal gas with convertible com-
ponents such that between certain limits of temperature and above a certain
limit of density the relation between p, t, and v shall be the same for a unit of
this ideal gas as for a unit of peroxide of nitrogen, and for a very great value
of v (within the given limits of temperature) the thermal capacity at constant
volume of the ideal and actual gases shall be the same. Let us regard t and v
as independent variables; we may let these letters and p refer alike to the ideal
and real gases, but we must distinguish the entropy η1 of the ideal gas from
the entropy η of the real gas. Now by (88)

dη

dv
“

dp

dt
(337)

therefore
d

dv

dη

dt
“

d

dt

dη

dv
“

d

dt

dp

dt
“

d2p

dt2
. (338)

Since a similar relation will hold true for η1, we obtain
d

dv

dη

dt
“

d

dv

dη1

dt
(339)

which must hold true within the given limits of temperature and density. Now
it is granted that

dη

dt
“

dη1

dt
(339)

for very great values of v at any temperature within the given limits (for the
two members of the equation represent the thermal capacities. at constant
volume of the real and ideal gases divided by t ), bence, in virtue of (339), this
equation must hold true in general within the given limits of temperature and
density. Again, as an equation like (337) will hold true of η1, we shall have

dη

dv
“

dη1

dv
(340)

From the two last equations it is evident that in all calorimetrical relations the
ideal and real gases are identical. Moreover the energy and entropy of the ideal
gas are evidently so far arbitrary that we may suppose them to have the same
values as in the real gas for any given values of t and v. Hence the entropies
of the two gases are the same within the given limits; and on account of the
necessary relation

dε “ tdη ´ pdv,
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the energies of the two gases are in like manner identical. Hence the funda-
mental equation between the energy, entropy, volume, and quantity of matter
must be the same for the ideal gas as for the actual.

We may easily form a fundamental equation for an ideal gas-mixture with
convertible components, which shall relate only to the phases of equilibrium.
For this purpose, we may use the equations of the form (312) to eliminate
from the equation of the form (273), which expresses the relation between the
pressure, the temperature, and the potentials for the proximate components,
as many of the potentials as there are equations of the former kind, leaving
the potentials for those components which it is convenient to regard as the
ultimate components of the gas-mixture.

In the case of a binary gas-mixture with convertible components, the com-
ponents will have the same potential, which may be denoted by µ, and the
fundamental equation will be

p “ a1L1t
c1`a1
a2 e

µ´E1

a1t ` a2L2t
c2`a2
a2 e

µ´E2

a2t , (342)

where
L1 “ e

H1´c1´a1
a1 , L2 “ e

H1´c2´a2
a2 (343)

From this equation, by differentiation and comparison with (98), we obtain

η

v
“L1

ˆ

c1 ` a1 ´
µ ´ E1

t

˙

t
c1
a1 e

µ´E1

a1t

` L2

ˆ

c2 ` a2 ´
µ ´ E2

t

˙

t
c2
a2 e

µ´E2

a2t ,

(344)

m

v
“ L1t

c1
a1 e

µ´E1

a1t ` L2t
c2
a2

µ´E2

a2t (345)

From the general equation (93) with the preceding equations the following is
easily obtained,—

ε

v
“ L1 pc1t ` E1q t

c1
a1 e

µ´E1

a1t ` L2 pc2t ` E2q t
c2
a2 e

µ´E2

a2t (346)

We may obtain the relation between p, t, v, and m by eliminating µ from (342)
and (345). For this purpose we may proceed as follows. From (342) and (345)
we obtain

p ´ a2t
m

v
“ pa1 ´ a2qL1t

c1`a1
a1 e

µ´E1

a1t , (347)

a1t
m

v
´ p “ pa1 ´ a2qL2t

c2`a2
a2 e

µ´E2

a2t ; (348)
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and from these equations we obtain

a1 log
´

p ´ a2t
m

v

¯

´ a2 log
´

a1t
m

v
´ p

¯

“ pa1 ´ a2q log pa1 ´ a1q

` a1 logL1 ´ a2 logL2 ` pc1 ´ c2 ` a1 ´ a2q log t ´
E1 ´ E2

t
.

(349)
(In the particular case when a1 “ 2a2, this equation will be equivalent to
(333).) By (347) and (348) we may easily eliminate µ from (346).

The reader will observe that the relations thus deduced from the funda-
mental equation (342) without any reference to the different components of
the gaseous mass are equivalent to those which relate to the phases of dissi-
pated energy of a binary gas-mixture with components which are equivalent
in substance but not convertible, except that the equations derived from (342)
do not give the quantities of the proximate components, but relate solely to
those properties which are capable of direct experimental verification without
the aid of any theory of the constitution of the gaseous mass.

The practical application of these equations is rendered more simple by the
fact that the ratio a1 : a2 will always bear a simple relation to unity. When a1
and a2 are equal, if we write a for their common value, we shall have by (342)
and (345)

pv “ amt, (350)
and by (345) and (346)

ε

m
“
L1 pc1t ` E1q ` L2 pc2t ` E2q t

c2´c1
a e

E1´E2

at

L1 ` L2t
c2´c1
a e

E1´E2

at

(351)

By this equation we may calculate directly the amount of heat required to raise
a given quantity of the gas from one given temperature to another at constant
volume. The equation shows that the amount of heat will be independent
of the volume of the gas. The heat necessary to produce a given change of
temperature in the gas at constant pressure, may be found by taking the
difference of the values of χ as defined by equation (89) for the initial and final
states of the gas. From (89), (350), and (351) we obtain

χ

m
“
L1 pc1t ` at ` E1q ` L2 pc2t ` at ` E2q t

c2´c1
a e

E1´E2

at

L1 ` L2t
c2´c1
a e

E1´E2

at

. (352)

By differentiation of the two last equations we may obtain directly the specific
heats of the gas at constant volume and at constant pressure.

The fundamental equation of an ideal ternary gas-mixture with a single
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relation of convertibility between its components is

p “a1e
H1´c1´a1

a1 t
c1`a1
a1 e

µ1´E1

a1t

` a2e
H2´c2´a2

a2 t
c2`a2
a2 e

µ2´E1

a2t

` a3e
H3´c3´a3

a3 t
c3`a3
a3 e

λ1µ1´λ2µ2´E3

a3t .

(353)

where λ1 and λ2 have the same meaning as on page 117.
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The Conditions of Internal and External Equilibrium
for Solids in contact with Fluids with regard to all
possible States of Strain of the Solids.

In treating of the physical properties of a solid, it is necessary to consider its
state of strain. A body is said to be strained when the relative position of its
parts is altered, and by its state of strain is meant its state in respect to the
relative position of its parts. We have hitherto considered the equilibrium of
solids only in the case in which their state of strain is determined by pressures
having the same values in all directions about any point. Let us now consider
the subject without this limitation.

If x1, y1, z1 are the rectangular co-ordinates of a point of a solid body in any
completely determined state of strain, which we shall call the state of reference,
and x, y, z, the rectangular co-ordinates of the same point of the body in the
state in which its properties are the subject of discussion, we may regard x,
y, z as functions of x1, y1, z1, the form of the functions determining the second
state of strain. For brevity, we may sometimes distinguish the variable state, to
which x, y, z relate, and the constant state (state of reference) to which x1, y1, z1

relate, as the strained and unstrained states; but it must be remembered that
these terms have reference merely to the change of form or strain determined
by the functions which express the relations of x, y, z and x1, y1, z1, and do
not imply any particular physical properties in either of the two states, nor
prevent their possible coincidence. The axes to which the co-ordinates x, y, z
and x1, y1, z1 relate will be distinguished as the axes of X,Y, Z and X 1, Y 1, Z 1.
It is not necessary, nor always convenient, to regard these systems of axes as
identical, but they should be similar, i.e., capable of superposition.

The state of strain of any element of the body is determined by the values
of the differential coefficients of x, y, and z with respect to x1, y1, and z1; for
changes in the values of x, y, z, when the differential coefficients remain the
same, only cause motions of translation of the body. When the differential
coefficients of the first order do not vary sensibly except for distances greater
than the radius of sensible molecular action, we may regard them as com-
pletely determining the state of strain of any element. There are nine of these
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differential coefficients, viz.
dx

dx1
,

dx

dy1
,

dx

dz1

dy

dx1
,

dy

dy1
,

dy

dz1

dz

dx1
,

dz

dy1
,

dz

dz1

,

/

/

/

/

/

.

/

/

/

/

/

-

(354)

It will be observed that these quantities determine the orientation of the ele-
ment as well as its strain, and both these particulars must be given in order
to determine the nine differential coefficients. Therefore, since the orientation
is capable of three independent variations, which do not affect the strain, the
strain of the element, considered without regard to directions in space, must
be capable of six independent variations.

The physical state of any given element of a solid in any unvarying state of
strain is capable of one variation, which is produced by addition or subtraction
of heat. If we write εr and ηr for the energy and entropy of the element divided
by its volume in the state of reference, we shall have for any constant state of
strain

δεV1 “ tδηV 1

But if the strain varies, we may consider εV as a function of ηV, and the nine
quantities in (354), and may write

δεV “ tδηV 1 ` XX 1δ
dx

dx1
` XY 1δ

dx

dy1
` XZ1δ

dx

dz1

` YX 1δ
dy

dx1
` YY 1

dy

dy1
` YZ1

dy

dz1

` ZX 1δ
dz

dx1
` ZY 1δ

dz

dy1
` ZX 1

dz

dz1
,

(354)

where XX 1 , . . . ZZ1 denote the differential coefficients of εV 1 taken with respect
to dx

dx1
, ¨ ¨ ¨

dz

dz1
. The physical signification of these quantities will be apparent,

if we apply the formula to an element which in the state of reference is a right
parallelepiped having the edges dx1, dy1, dz1, and suppose that in the strained
state the face in which x1 has the smaller constant value remains fixed, while
the opposite face is moved parallel to the axis of X. If we also suppose no heat
to be imparted to the element, we shall have, on multiplying by dx1dy1dz1,

δεV ¨ dx1dy1dz1 “ XX 1δ
dx

dx1
dx1dy1dz1.

Now the first member of this equation evidently represents the work done
upon the element by the surrounding elements; the second member must there-
fore have the same value. Since we must regard the forces acting on opposite
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faces of the elementary parallelepiped as equal and opposite, the whole work
done will be zero except for the face which moves parallel to X. And since
δ
dx

dx1
dx1 represents the distance moved by this face, XX 1dy1dz1 must be equal

to the component parallel to X of the force acting upon this face. In general,
therefore, if by the positive side of a surface for which x1 is constant we under-
stand the side on which x1 has the greater value, we may say that XX 1 denotes
the component parallel to X of the force exerted by the matter on the positive
side of a surface for which x1 is constant upon the matter on the negative side
of that surface per unit of the surface measured in the state of reference. The
same may be said, mutatis mutandis, of the other symbols of the same type.

It will be convenient to use
ř

and
ÿ1

to denote summation with respect to
quantities relating to the axes X,Y, Z, and to the axes X 1, Y 1, Z 1, respectively.
With this understanding we may write

δεV 1 “ tδηV 1 `
ÿ ÿ1

ˆ

XX 1δ
dx

dx1

˙

. (356)

This is the complete value of the variation of εV 1 for a given element of the
solid. If we multiply by dx1dy1dz1, and take the integral for the whole body,
we shall obtain the value of the variation of the total energy of the body,
when this is supposed invariable in substance. But if we suppose the body
to be increased or diminished in substance at its surface (the increment being
continuous in nature and state with the part of the body to which it is joined),
to obtain the complete value of the variation of the energy of the body, we
must add the integral

ż

εV 1δN 1Ds1

in which Ds1 denotes an element of the surface measured in the state of ref-
erence, and δN 1 the change in position of this surface (due to the substance
added or taken away) measured normally and outward in the state of refer-
ence. The complete value of the variation of the intrinsic energy of the solid
is therefore
¡

tδηV 1dx1dy1dz1 `

¡

ÿ ÿ1
ˆ

XX 1δ
dx

dx1

˙

dx1dy1dz1 `

ż

εV 1δN 1Ds1. (357)

This is entirely independent of any supposition in regard to the homogeneity
of the solid.

To obtain the conditions of equilibrium for solid and fluid masses in contact,
we should make the variation of the energy of the whole equal to or greater
than zero. But since we have already examined the conditions of equilibrium
for fluids, we need here only seek the conditions of equilibrium for the interior
of a solid mass and for the surfaces where it comes in contact with fluids. For
this it will be necessary to consider the variations of the energy of the fluids
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only so far as they are immediately connected with the changes in the solid.
We may suppose the solid with so much of the fluid as is in close proximity to it
to be enclosed in a fixed envelop, which is impermeable to matter and to heat,
and to which the solid is firmly attached wherever they meet. We may also
suppose that in the narrow space or spaces between the solid and the envelop,
which are filled with fluid, there is no motion of matter or transmission of
heat across any surfaces which can be generated by moving normals to the
surface of the solid, since the terms in the condition of equilibrium relating to
such processes may be cancelled on account of the internal equilibrium of the
fluids. It will be observed that this method is perfectly applicable to the case
in which a fluid mass is entirely enclosed in a solid. A detached portion of the
envelop will then be necessary to separate the great mass of the fluid from the
small portion adjacent to the solid, which alone we have to consider. Now the
variation of the energy of the fluid mass will be, by equation (13),

ż F

tδDη ´

ż F

pδDv `
ÿ

1

ż F

µ1δDm1, (358)

where
şF denotes an integration extending over all the elements of the fluid

(within the envelop), and
ÿ

1
denotes a summation with regard to those in-

dependently variable components of the fluid of which the solid is composed.
Where the solid does not consist of substances which are components, actual
or possible (see page 10), of the fluid, this term is of course to be cancelled.

If we wish to take account of gravity, we may suppose that it acts in the
negative direction of the axis of Z. It is evident that the variation of the energy
due to gravity for the whole mass considered is simply

¡

gΓ1δzdx1dy1dz1, (359)

where g denotes the force of gravity, and Γ1 the density of the element in the
state of reference, and the triple integration, as before, extends throughout the
solid.

We have, then, for the general condition of equilibrium,
¡

tδηV 1dx1dy1dz1 `

¡

ÿ ÿ1
ˆ

XX 1 ¨ δ
dx

dx1

˙

dx1dy1dz1

`

¡

gΓ1δzdx1dy1dz1 `

ż

εV 1δN 1Ds1

`

ż F

tδDη ´

ż F

pδDv `
ÿ

1

ż F

µ1δDm1 ŕ 0.

(360)

The equations of condition to which these variations are subject are:
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(1) that which expresses the constancy of the total entropy,
¡

δηV 1dx1dy1dz1 `

ż

ηV 1δN 1Ds1 `

ż F

δDη “ 0; (361)

(2) that which expresses how the value of δDv for any element of the fluid is
determined by changes in the solid,

δDv “ ´pαδx ` βδy ` γδzqDs ´ vV 1δN 1Ds1, (362)

where α, β, γ denote the direction cosines of the normal to the surface of the
body in the state to which x, y, z relate, Ds the element of the surface in this
state corresponding to Ds1 in the state of reference, and vV 1 the volume of an
element of the solid divided by its volume in the state of reference;
(3) those which express how the values of δDm1, δDm2, etc. for any element
in the fluid are determined by the changes in the solid,

δDm1 “ ´Γ1
1δN

1Ds1,

δDm2 “ ´Γ1
2δN

1Ds1,

etc.,
(363)

where Γ1
1,Γ

1
2, etc. denote the separate densities of the several components in

the solid in the state of reference.
Now, since the variations of entropy are independent of all the other varia-

tions, the condition of equilibrium (360), considered with regard to the equa-
tion of condition (361), evidently requires that throughout the whole system

t “ const. (364)

We may therefore use (361) to eliminate the fourth and fifth integrands from
(360). If we multiply (362) by p, and take the integrals for the whole surface
of the solid and for the fluid in contact with it, we obtain the equation

ż F

pδDv “ ´

ż

ppαδx ` βδy ` γδzqDs ´

ż

pvV 1δN 1Ds1, (365)

by means of which we may eliminate the sixth integral from (360). If we add
equations (363) multiplied respectively by µ1, µ2, etc., and take the integrals,
we obtain the equation

ÿ

1

ż F

µ1δDm1 “ ´

ż

ÿ

1
pµ1Γ

1
1q δN 1Ds1, (366)

by means of which we may eliminate the last integral from (360).
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The condition of equilibrium is thus reduced to the form
¡

ÿ ÿ1
ˆ

XX 1δ
dx

dx1

˙

dx1dy1dz1 `

¡

gΓ1δzdx1dy1dz1

`

ż

εV 1δN 1Ds1 ´

ż

tηV 1δN 1Ds1 `

ż

ppαδx ` βδy ` γδzqDs

`

ż

pvV 1δN 1Ds1 ´

ż

ÿ

1
pµ1Γ1q δN 1Ds1 ŕ 0,

(367)

in which the variations are independent of the equations of condition, and in
which the only quantities relating to the fluids are p and µ1, µ2, etc.

Now by the ordinary method of the calculus of variations, if we write α1,
β1, γ1 for the direction-cosines of the normal to the surface of the solid in the
state of reference, we have

¡

XX 1δ
dx

dx1
dx1dy1dz1 “

ż

α1XX 1δxDs1 ´

¡

dXX 1

dx1
δxdx1dy1dz1, (368)

with similar expressions for the other parts into which the first integral in (367)
may be divided. The condition of equilibrium is thus reduced to the form

´

¡

ÿ ÿ1
ˆ

dXX 1

dx1
δx

˙

dx1dy1dz1 `

¡

gΓ1δzdx1dy1dz1

`

ż

ÿ ÿ1
pα1XX 1δxqDs1 `

ż

p
ÿ

pαδxqDs

`

ż

”

εV 1 ´ tηV 1 ` pvV 1 ´
ÿ

1
pµ1Γ

1q

ı

δN 1Ds1 ŕ 0. (369)

It must be observed that if the solid mass is not continuous throughout in
nature and state, the surface-integral in (368), and therefore the first surface-
integral in (369), must be taken to apply not only to the external surface of
the solid, but also to every surface of discontinuity within it, and that with
reference to each of the two masses separated by the surface. To satisfy the
condition of equilibrium, as thus understood, it is necessary and sufficient that
throughout the solid mass

ÿ ÿ1
ˆ

dXX 1

dx1
δx

˙

´ gΓ1δz “ 0; (370)

that throughout the surfaces where the solid meets the fluid

Ds1
ÿ ÿ1

pα1XX 1δxq ` Dsp
ÿ

pαδxq “ 0, (371)

and
”

εV 1 ´ tηV 1 ` pvV 1 ´
ÿ

1
pµ1Γ

1
1q

ı

δN 1 ŕ 0; (372)
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and that throughout the internal surfaces of discontinuity
ÿ ÿ1

pα1XX 1δxq1 `
ÿ ÿ1

pα1XX 1δxq2 “ 0. (373)

where the suffixed numerals distinguish the expressions relating to the masses
on opposite sides of a surface of discontinuity.

Equation (370) expresses the mechanical conditions of internals equilibrium
for a continuous solid under the influence of gravity. If we expand the first
term, and set the coefficients of δx, δy, and δz separately equal to zero, we
obtain

dXX 1

dx1
`

dXY 1

dy1
`

dXZ1

dz1
“ 0,

dYX 1

dx1
`

dYY 1

dy1
`

dYZ1

dz1
“ 0,

dZX 1

dx1
`

dZY 1

dy1
`

dZZ1

dz1
“ gΓ1.

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

(374)

The first member of any one of these equations multiplied by dx1dy1dz1 evi-
dently represents the sum of the components parallel to one of the axes X,Y, Z
of the forces exerted on the six faces of the element dx1dy1dz1 by the neighbor-
ing elements.

As the state which we have called the state of reference is arbitrary, it may
be convenient for some purposes to make it coincide with the state to which
x, y, z relate, and the axes X 1, Y 1, Z 1 with the axes X,Y, Z. The values of
XX 1 , . . . ZZ1 on this particular supposition may be represented by the symbols
XX , . . . ZZ . Since

XY 1 “
dεV 1

d
dx

dy1

, and YX 1 “
dεV 1

d
dy

dx1

,

and since, when the states, x, y, z and x1y1z1 coincide, and the axes X,Y, Z,
and X 1, Y 1, Z 1, d

dx

dy1
and d

dy

dx1
represent displacements which differ only by a

rotation, we must have
XY “ YX , (375)

and for similar reasons,

YZ “ ZY , ZX “ XZ . (376)

The six quantities XX , YY , ZZ , XY or YX , YZ or ZY , and ZX or XZ are called
the rectangular components of stress, the three first being the longitudinal
stresses and the three last the shearing stresses. The mechanical conditions
of internal equilibrium for a solid under the influence of gravity may therefore

142



be expressed by the equations

dXX

dx
`

dXY

dy
`

dXZ

dz
“ 0,

dYX
dx

`
dYY
dy

`
dYZ
dz

“ 0,

dZX
dx

`
dZY
dy

`
dZZ
dz

“ gΓ,

(377)

where Γ denotes the density of the element to which the other symbols relate.
Equations (375), (376) are rather to be regarded as expressing necessary rela-
tions (when XX , . . . ZZ are regarded as internal forces determined by the state
of strain of the solid) than as expressing conditions of equilibrium. They will
hold true of a solid which is not in equilibrium, —of one, for example, through
which vibrations are propagated, —which is not the case with equations (377).

Equation (373) expresses the mechanical conditions of equilibrium for a
surface of discontinuity within the solid. If we set the coefficients of δx, δy, δz,
separately equal to zero we obtain

pα1XX 1 ` β1XY 1 ` γ1XZ1q1 ` pα1XX 1 ` βXY 1 ` γ1XZ1q2 “ 0,

pα1YX 1 ` β1YY 1 ` γ1YZ1q1 ` pα1YX 1 ` β1YY 1 ` γ1YZ1q2 “ 0,

pα1ZX 1 ` β1ZY 1 ` γ1ZZ1q1 ` pα1ZX 1 ` β1ZY 1 ` γ1ZZ1q2 “ 0.

,

/

.

/

-

(378)

Now when the α1, β1, γ1 represent the direction-cosines of the normal in the state
of reference on the positive side of any surface within the solid, an expression
of the form

α1XX 1 ` β1XY 1 ` γ1XZ1 (379)
represents the component parallel to X of the force exerted upon the surface
in the strained state by the matter on the positive side per unit of area mea-
sured in the state of reference. This is evident from the consideration that in
estimating the force upon any surface we may substitute for the given surface
a broken one consisting of elements for each of which either x1 or y1 or z1 is
constant. Applied to a surface bounding a solid, or any portion of a solid which
may not be continuous with the rest, when the normal is drawn outward as
usual, the same expression taken negatively represents the component parallel
to X of the force exerted upon the surface (per unit of surface measured in
the state of reference) by the interior of the solid, or of the portion considered.
Equations (378) therefore express the condition that the force exerted upon
the surface of discontinuity by the matter on one side and determined by its
state of strain shall be equal and opposite to that exerted by the matter on
the other side. Since

pα1q1 “ ´ pα1q2 , pβ1q1 “ ´pβ1q2, pγ1q1 “ ´ pγ1q2
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we may also write

α1 pXX 1q1 ` β1 pXY 1q1 ` γ1 pXZ1q1 “ α1 pXX 1q2 ` β1 pXY 1q2 ` γ1 pXZ1q2

etc.

*

(380)

where the signs of α1, β1, γ1 may be determined by the normal on either side of
the surface of discontinuity.

Equation (371) expresses the mechanical condition of equilibrium. for a
surface where the solid meets a fluid. It involves the separate equations

α1XX 1 ` β1XY 1 ` γ1XZ1 “ ´αp
Ds

Ds1
,

α1YX 1 ` β1YY 1 ` γ1YZ1 “ ´βp
Ds

Ds1
,

α1ZX 1 ` βZY 1 ` γ1ZZ1 “ ´γp
Ds

Ds1
,

,

/

/

/

/

/

.

/

/

/

/

/

-

(381)

the fraction Ds

Ds1
denoting the ratio of the areas of the same element of the

surface in the strained and unstrained states of the solid. These equations
evidently express that the force exerted by the interior of the solid upon an
element of its surface, and determined by the strain of the solid, must be
normal to the surface and equal (but acting in the opposite direction) to the
pressure exerted by the fluid upon the same element of surface.

If we wish to replace α and Ds by α1, β1, γ1, and the quantities which express
the strain of the element, we may make use of the following considerations.
The product αDs is the projection of the element Ds on the Y -Z plane. Now
since the ratio Ds

Ds1
is independent of the form of the element, we may suppose

that it has any convenient form. Let it be bounded by the three surfaces x1 “

const., y1 “ const., z1 “ const., and let the parts of each of these surfaces
included by the two others with the surface of the body be denoted by L,M ,
and N , or by L1,M , and N 1, according as we have reference to the strained
or unstrained state of the body. The areas of L1,M 1, and N 1 are evidently
α1Ds1, β1Ds1, and γ1Ds1; and the sum of the projections of L,M , and N upon
any plane is equal to the projection of Ds upon that plane, since L, U , and N
with Ds include a solid figure. (In propositions of this kind the sides of surfaces
must be distinguished. If the normal to Ds falls outward from the small solid
figure, the normals to L,M , and N must fall inward, and vice versa.) Now L1

is a right-angled triangle of which the perpendicular sides may be called dy1

and dz1. The projection of L on the Y -Z plane will be a triangle, the angular
points of which are determined by the co-ordinates

y, z; y `
dy

dy1
dy1, z `

dz

dy1
dy1; y `

dy

dz1
dz1, z `

dz

dz1
dz1;
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the area of such a triangle is

1

2

ˆ

dy

dy1

dz

dz1
´

dz

dy1

dy

dz1

˙

dy1dz1

or, since 1

2
dy1dz1 represents the area of L1.

ˆ

dy

dy1

dz

dz1
´

dz

dy1

dy

dz1

˙

α1Ds1.

(That this expression has the proper sign will appear if we suppose for the
moment that the strain vanishes.) The areas of the projections of M and
N upon the same plane will be obtained by changing y1, z1 and α1 in this
expression into z1, x1, and β1, and into x1, y1, and γ1. The sum of the three
expressions may be substituted for αDs in (381).

We shall hereafter use
ÿ1

to denote the sum of the three terms obtained
by rotary substitutions of quantities relating to the axes X 1, Y 1, Z 1 (i.e., by
changing x1, y1, z1 into y1, z1, x1, and into z1, x1, y1, with similar changes in regard
to α1, β1, γ1, and other quantities relating to these axes), and

ř

to denote the
sum of the three terms obtained by similar rotary changes of quantities relating
to the axes X,Y, Z. This is only an extension of our previous use of these
symbols.

With this understanding, equations (381) may be reduced to the form
ÿ1

pα1XX 1q ` p
ÿ1

"

α1

ˆ

dy

dy1

dz

dz1
´

dz

dy1

dy

dz1

˙*

“ 0,

etc.

,

.

-

(382)

The formula (372) expresses the additional condition of equilibrium which
relates to the dissolving of the solid, or its growth without discontinuity. If the
solid consists entirely of substances which are actual components of the fluid,
and there are no passive resistances which impede the formation or dissolving
of the solid, δV 1 may have either positive or negative values, and we must have

εV 1 ´ tηV 1 ´ pvV 1 “
ÿ

1
pµ1Γ

1
1q . (383)

But if some of the components of the solid are only possible components (see
page 10) of the fluid, δN 1 is incapable of positive values, as the quantity of the
solid cannot be increased, and it is sufficient for equilibrium that

εV 1 ´ tηV 1 ` pV 1 ő
ÿ

1
pµ1Γ

1
1q . (384)

To express condition (383) in a form independent of the state of reference,
we may use εV, ηV,Γ1, etc. to denote the densities of energy, of entropy, and of

145



the several component substances in the variable state of the solid. We shall
obtain, on dividing the equation by vV 1 ,

εV ´ tηV ` p “
ÿ

1
pµ1Γ1q . (385)

It will be remembered that the summation relates to the several components
of the solid. If the solid is of uniform composition throughout, or if we only
care to consider the contact of the solid and the fluid at a single point, we
may treat the solid as composed of a single substance. If we use µ1 to denote
the potential for this substance in the fluid, and Γ to denote the density of
the solid in the variable state (Γ1, as before denoting its density in the state of
reference), we shall have

εV 1 ´ tηV 1 ` pvV 1 “ µ1Γ
1, (386)

and
εV ´ tηV ` p “ µ1Γ. (387)

To fix our ideas in discussing this condition, let us apply it to the case of a
solid body which is homogeneous in nature and in state of strain. If we denote
by ε, η, v, and m, its energy, entropy, volume, and mass, we have

ε ´ tη ` pv “ µ1m (388)

Now the mechanical conditions of equilibrium for the surface where a solid
meets a fluid require that the traction upon the surface determined by the
state of strain of the solid shall be normal to the surface. This condition is
always satisfied with respect to three surfaces at right angles to one another. In
proving this well-known proposition, we shall lose nothing in generality, if we
make the state of reference, which is arbitrary, coincident with the state under
discussion, the axes to which these states are referred being also coincident.
We shall then have, for the normal component of the traction per unit of
surface across any surface for which the direction-cosines of the normal are
α, β, γ (compare (379), and for the notation XX etc., page 141),

S “α pαXX ` βXY ` γXZq

` β pαYX ` βYY ` γYZq

` γ pαZX ` βZY ` γZZq ,

or, by (375), (376),

S “α2XX ` β2YY ` γ2ZZ

` 2αβXY ` 2βγYZ ` 2γαZX .
(389)

We may also choose any convenient directions for the co-ordinate axes. Let us
suppose that the direction of the axis of X is so chosen that the value of S for

146



the surface perpendicular to this axis is as great as for any other surface, and
that the direction of the axis of Y (supposed at right angles to X ) is such that
the value of S for the surface perpendicular to it is as great as for any other
surface passing through the axis of X. Then, if we write dS

dα
,
dS

dβ
,
dS

dγ
for the

differential coefficients derived from the last equation by treating a, β, and γ
as independent variables,

dS

da
dα `

dS

dβ
dβ `

dS

dγ
dγ “ 0,

when
αdα ` βdβ ` γdγ “ 0,

and
α “ 1, β “ 0, γ “ 0.

That is,
dS

dβ
“ 0, and dS

dγ
“ 0.

when
α “ 1, β “ 0, γ “ 0.

Hence
XY “ 0, and ZX “ 0. (390)

Moreover,
dS

dβ
dβ `

dS

dγ
dγ “ 0,

when
α “ 0, dα “ 0.

βdβ ` γdγ “ 0,

and
β “ 1, γ “ 0.

Hence
YZ “ 0. (391)

Therefore, when the co-ordinate axes have the supposed directions, which are
called the principal axes of stress, the rectangular components of the traction
across any surface pα, β, γq are by (379)

αXX, βYY, γZZ. (392)

Hence, the traction across any surface will be normal to that surface, —
(1), when the surface is perpendicular to a principal axis of stress;
(2), if two of the principal tractions XX, YY, ZZ are equal, when the surface

is perpendicular to the plane containing the two corresponding axes (in this
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case the traction across any such surface is equal to the common value of the
two principal tractions);

(3), if the principal tractions are all equal, the traction is normal and con-
stant for all surfaces.

It will be observed that in the second and third cases the positions of the
principal axes of stress are partially or wholly indeterminate (so that these
cases may be regarded as included in the first), but the values of the principal
tractions are always determinate, although not always different.

If, therefore, a solid which is homogeneous in nature and in state of strain
is bounded by six surfaces perpendicular to the principal axes of stress, the
mechanical conditions of equilibrium for these surfaces may be satisfied by the
contact of fluids having the proper pressures (see (381)), which will in general
be different for the different pairs of opposite sides, and may be denoted by
p1, p2, p3. (These pressures are equal to the principal tractions of the solid
taken negatively.) It will then be necessary for equilibrium with respect to the
tendency of the solid to dissolve that the potential for the substance of the
solid in the fluids shall have values µ1

1, µ
2
1, µ

3
1 , determined by the equations

ε ´ tη ` p1v “ µ1
1m, (393)

ε ´ tη ` p2v “ µ2
1m, (394)

ε ´ tη ` p3v “ µ3
1m. (395)

These values, it will be observed, are entirely determined by the nature and
state of the solid, and their differences are equal to the differences of the
corresponding pressures divided by the density of the solid.

It may be interesting to compare one of these potentials, as µ1
1, with the

potential (for the same substance) in a fluid of the same temperature t and
pressure p1 which would be in equilibrium with the same solid subjected on all
sides to the uniform pressure p1. If we write rεsp1 , rηsp1 , rvsp1 , and rµ1sp1 for the
values which ε, η, v, and µ1 would receive on this supposition, we shall have

rεsp1 ´ trηsp1 ` p1rvsp1 “ rµ1sp1 m. (396)

Subtracting this from (393), we obtain

ε ´ rεsp1 ´ tη ` trηsp1 ` p1v ´ p1rηsp1 “ µ1m ´ rµ1sp1 m. (397)

Now it follows immediately from the definitions of energy and entropy that
the first four terms of this equation represent the work spent upon the solid in
bringing it from the state of hydrostatic stress to the other state without change
of temperature, and p1v´p1rvsp1 evidently denotes the work done in displacing
a fluid of pressure p1 surrounding the solid during the operation. Therefore, the
first number of the equation represents the total work done in bringing the solid
when surrounded by a fluid of pressure p1 from the state of hydrostatic stress
p1 to the state of stress p1, p2, p3. This quantity is necessarily positive, except
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of course in the limiting case when p1 “ p2 “ p3. If the quantity of matter of
the solid body be unity, the increase of the potential in the fluid on the side of
the solid on which the pressure remains constant, which will be necessary to
maintain equilibrium, is equal to the work done as above described. Hence, µ1

1

is greater than rµ1sp1 , and for similar reasons µ2
1 is greater than the value of the

potential which would be necessary for equilibrium if the solid were subjected
to the uniform pressure p2, and µ3

1 greater than that which would be necessary
for equilibrium if the solid were subjected to the uniform pressure p3. That
is (if we adapt our language to what we may regard as the most general case,
viz., that in which the fluids contain the substance of the solid but are not
wholly composed of that substance), the fluids in equilibrium with the solid
are all supersaturated with respect to the substance of the solid, except when
the solid is in a state of hydrostatic stress; so that if there were present in any
one of these fluids any small fragment of the same kind of solid subject to the
hydrostatic pressure of the fluid, such a fragment would tend to increase. Even
when no such fragment is present, although there must be perfect equilibrium
so far as concerns the tendency of the solid to dissolve or to increase by the
accretion of similarly strained matter, yet the presence of the solid which is
subject to the distorting stresses, will doubtless facilitate the commencement
of the formation of a solid of hydrostatic stress upon its surface, to the same
extent, perhaps, in the case of an amorphous body, as if it were itself subject
only to hydrostatic stress. This may sometimes, or perhaps generally, make it
a necessary condition of equilibrium in cases of contact between a third and
an amorphous solid which can be formed out of it, that the solid at the surface
where it meets the fluid shall be sensibly in a state of hydrostatic stress.

But in the case of a solid of continuous crystalline structure, subjected to
distorting stresses and in contact with solutions satisfying the conditions de-
duced above, although crystals of hydrostatic stress would doubtless commence
to form upon its surface (if the distorting stresses and consequent supersatu-
ration of the fluid should be carried too far), before they would commence to
be formed within the fluid or on the surface of most other bodies, yet within
certain limits the relations expressed by equations (393)-(395) must admit of
realization, especially when the solutions are such as can be easily supersatu-
rated. ∗

It may be interesting to compare the variations of p, the pressure in the
fluid which determines in part the stresses and the state of strain of the solid,
with other variations of the stresses or strains in the solid, with respect to the
relation expressed by equation (388). To examine this point with complete
generality, we may proceed in the following manner.

Let us consider so much of the solid as has in the state of reference the form
∗ The effect of distorting stresses in a solid on the phenomena of crystallization and liquefaction, as well as

the effect of change of hydrostatic pressure common to the solid and liquid, was first described by Professor
James Thomson. See Trans. R. S. Edin., vol. xvi, p. 575; and Proc. Roy. Soc., vol. xi. p. 473, or Phil.
Mag., ser. 4, vol. xxiv, p. 395.
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of a cube, the edges of which are equal to unity, and parallel to the co-ordinate
axes. We may suppose this body to be homogeneous in nature and in state
of strain both in its state of reference and in its variable state. (This involves
no loss of generality, since we may make the unit of length as small as we
choose.) Let the fluid meet the solid on one or both of the surfaces for which
Z 1 is constant. We may suppose these surfaces to remain perpendicular to the
axis of Z in the variable state of the solid, and the edges in which y1 and z1

are both constant to remain parallel to the axis of X. It will be observed that
these suppositions only fix the position of the strained body relatively to the
co-ordinate axes, and do not in any way limit its state of strain. It follows
from the suppositions which we have made that and

dz

dx1
“ const. “ 0,

dz

dy1
“ const. “ 0,

dy

dz1
“ const. “ 0; (398)

XZ1 “ 0, YZ1 “ 0, ZZ1 “ ´p
dx

dx1

dy

dy1
. (399)

Hence, by (355),

dεV 1 “ tdηV 1 ` XX 1d
dx

dx1
` XY 1d

dx

dy1
` YY 1d

dy

dy1
´ p

dx

dx1

dy

dy1
d
dz

dz1
(400)

Again, by (388),

dε “ tdη ` ηdt ´ pdv ´ vdp ` mdµ1. (401)

Now the suppositions which have been made require that

v “
dx

dx1

dy

dy1

dz

dz1
, (402)

and
dv “

dy

dy1

dz

dz12
d
dx

dx1
`

dz

dz1

dx

dx1
d
dy

dy1
`

dx

dx1

dy

dy1
d
dz

dz12
. (403)

Combining equations (400), (401), and (403), and observing that εV and ηV
are equivalent to ε and η, we obtain

ηdt ´ vdp ` mdµ1

“

ˆ

XX ` p
dy

dy1

dz

dz1

˙

d
dx

dx1
` Xrd

dx

dy1
`

ˆ

YY1 ` p
dz

dz1

dx

dx1

˙

d
dy

dy2

(404)

The reader will observe that when the solid is subjected on all sides to the
uniform normal pressure p, the coefficients of the differentials in the second
member of this equation will vanish. For the expression dy

dy1

dz

dz1
represents

the projection on the Y -Z plane of a side of the parallelepiped for which x1
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is constant, and multiplied by p it will be equal to the component parallel to
the axis of X of the total pressure across this side, i.e., it will be equal to XX

taken negatively. The case is similar with respect to the coefficient of d dy

dy1
;

and XY, evidently denotes a force tangential to the surface on which it acts. It
will also be observed, that if we regard the forces acting upon the sides of the
solid parallelepiped as composed of the hydrostatic pressure p together with
additional forces, the work done in any infinitesimal variation of the state of
strain of the solid by these additional forces will be represented by the second
member of the equation.

We will first consider the case in which the fluid is identical in substance
with the solid. We have then, by equation (97), for a mass of the fluid equal
to that of the solid,

ηFdt ´ vFdp ` mdµ1 “ 0, (405)
ηF and vF denoting the entropy and volume of the fluid. By subtraction we
obtain

´ pηF ´ ηq dt ` pvF ´ vq dp

“

ˆ

XX1 ` p
dy

dy1

dz

dz1

˙

d
dx

dx1
` XY1d

dx

dy1
`

ˆ

YY 1 ` p
dz

dz1

dx

dx1

˙

d
dy

dy2

(406)

Now if the quantities dx

dx1
, dx

dy1
, dy

dy1
remain constant, we shall have for the

relation between the variations of temperature and pressure which is necessary
for the preservation of equilibrium

dt

dp
“
vF ´ v

ηF ´ η
“ t

vp ´ v

Q
, (407)

where Q denotes the heat which would be absorbed if the solid body should
pass into the fluid state without change of temperature or pressure. This
equation is similar to (131), which applies to bodies subject to hydrostatic
pressure. But the value of dt

dp
will not generally be the same as if the solid

were subject on all sides to the uniform normal pressure p; for the quantities
v and η (and therefore Q) will in general have different values. But when the
pressures on all sides are normal and equal, the value of dt

dp
will be the same,

whether we consider the pressure when varied as still normal and equal on all
sides, or consider the quantities dx

dx1
, dx

dy1
, dy

dy1
as constant.

But if we wish to know how the temperature is affected if the pressure
between the solid and fluid remains constant, but the strain of the solid is
varied in any way consistent with this supposition, the differential coefficients
of t with respect to the quantities which express the strain are indicated by
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equation (406). These differential coefficients all vanish, when the pressures
on all sides are normal and equal, but the differential coefficient dt

dp
, when

dx

dx1
,
dx

dy1
,
dy

dy1
are constant, or when the pressures on all sides are normal and

equal, vanishes only when the density of the fluid is equal to that of the solid.
The case is nearly the same when the fluid is not identical in substance with

the solid, if we suppose the composition of the fluid to remain unchanged. We
have necessarily with respect to the fluid

dµ1 “

ˆ

dµ1

dt

˙pFq

p,m

dt `

ˆ

dµ1

dp

˙pFq

t,m

dp∗ (408)

where the index (FE) is used to indicate that the expression to which it is
affixed relates to the fluid. But by equation (92)

ˆ

dµ1

dt

˙pFq

pm

“ ´

ˆ

dη

dm1

˙pFq

t,p,m

, and
ˆ

dµ1

dp

˙pFq

t,m

“

ˆ

dv

dm1

˙pFq

t,p,m

(409)

Substituting these values in the preceding equation, transposing terms, and
multiplying by m, we obtain

m

ˆ

dη

dm1

˙pFq

t,p,m

dt ´ m

ˆ

dv

dm1

˙pFq

t,p,m

dp ` mdµ1 “ 0. (410)

By subtracting this equation from (404) we may obtain an equation similar to
(406), except that in place of ηF and vF we shall have the expressions

m

ˆ

dη

dm1

˙pFq

t,p,m

and m

ˆ

dv

dm1

˙pFq

t,p,m

The discussion of equation (406) will therefore apply mutatis mutandis to this
case.

We may also wish to find the variations in the composition of the fluid
which will be necessary for equilibrium when the pressure p or the quantities
dx

dx1
, dx

dy1
, dy

dy1
are varied, the temperature remaining constant. If we know the

value for the fluid of the quantity represented by ζ on page 34 in terms of
t, p, and the quantities of the several components m1,m2,m3, etc., the first of
which relates to the substance of which the solid is formed, we can easily find
the value of µ1 in terms of the same variables. Now in considering variations
in the composition of the fluid, it will be sufficient if we make all but one of

∗ A suffixed m stands here, as elsewhere in this paper, for all the symbols m1, m2, etc., except such as
may occur in the differential coefficient.
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the components variable. We may therefore give to m1 a constant value, and
making t also constant, we shall have

dµ1 “

ˆ

dµ1

dp

˙pFq

t,m

dp `

ˆ

dµ1

dm2

˙pFq

t,p,m

dm2 `

ˆ

dµ1

dm3

˙pFq

t,p,m

dm3 ` etc.

Substituting this value in equation (404), and cancelling the term containing
dt2 we obtain

#

m

ˆ

dµ1

dp

˙pFq

t,m

´ v

+

dp ` m

ˆ

dµ1

dm2

˙pFq

t,p,m

dm2

` m

ˆ

dµ1

dm3

˙pFq

t,p,m

dm3 ` etc. “

ˆ

XX 1 ` p
dy

dy1

dz

dz1

˙

d
dx

dx1

` XY1d
dx

dy1
`

ˆ

YY1 ` p
dz

dz1

dx

dx1

˙

d
dy

dy1

(411)

This equation shows the variation in the quantity of any one of the components
of the fluid (other than the substance which forms the solid) which will balance
a variation of p, or of dx

dx1
, dx

dy1
, dy

dy1
, with respect to the tendency of the solid

to dissolve.

Fundamental Equations for Solids.

The principles developed in the preceding pages show that the solution of
problems relating to the equilibrium of a solid, or at least their reduction to
purely analytical processes, may be made to depend upon our knowledge of the
composition and density of the solid at every point in some particular state,
which we have called the state of reference, and of the relation existing between
the quantities which have been represented by εV1 , ηV1 ,

dx

dx1
,
dx

dy1
, . . .

dz

dz1
, x1, y1,

and z1. When the solid is in contact with fluids, a certain knowledge of the
properties of the fluids is also requisite, but only such as is necessary for the
solution of problems relating to the equilibrium of fluids among themselves.

If in any state of which a solid is capable, it is homogeneous in its nature
and in its state of strain, we may choose this state as the state of reference, and
the relation between εV 1 , ηV 1 ,

dx

dx1
. . .

dz

dz1
, will be independent of x1, y1, z1. But

it is not always possible, even in the case of bodies which are homogeneous in
nature, to bring all the elements simultaneously into the same state of strain.
It would not be possible, for example, in the case of a Prince Rupert’s drop.
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If, however, we know the relation between εV 1 , ηV 1 ,
dx

dx1
, . . .

dz

dz1
, for any kind

of homogeneous solid, with respect to any given state of reference, we may
derive from it a similar relation with respect to any other state as a state of
reference. For if x1, y1, z1 denote the co-ordinates of points of the solid in the
first state of reference, and x2, y2, z2 the co-ordinates of the same points in the
second state of reference, we shall have necessarily

dx

dx1
“

dx

dx2

dx2

dx1
`

dx

dy2

dy2

dx1
`

dx

dz2

dz2

dx2
, etc. (nine equations), (412)

and if we write R for the volume of an element in the state px2, y2, z2q divided
bo its volume in the state px1, y1, z1q, we shall have

R “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dx2

dx1

dx2

dy1

dx2

dz1

dy2

dx1

dy2

dy1

dy2

dz1

dz2

dx1

dz2

dy1

dz2

dz1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(413)

εV 1 “ RεV 2 , ηV 1 “ RηV 2 . (414)
If, then, we have ascertained by experiment the value of εV 1 in terms of ηV 1 ,
dx

dx1
, . . .

dz

dz1
, and the quantities which express the composition of the body,

by the substitution of the values given in (412)-(414), we shall obtain εV 2 in
terms of ηV 2 ,

dx

dx2
, . . .

dz

dz2
,
dx2

dx1
, . . .

dz2

dz1
, and the quantities which express the

composition of the body.
We may apply this to the elements of a body which may be variable from

point to point in composition and state of strain in a given state of reference
px2, y2, z2q, and if the body is fully described in that state of reference, both in
respect to its composition and to the displacement which it would be necessary
to give to a homogeneous solid of the same composition, for which εV is known
in terms of ηV 2 , dx

dx2
, . . .

dz

dz2
and the quantities which express its composition,

to bring it from the state of reference px1, y1, z1q into a similar and similarly
situated state of strain with that of the element of the nonhomogeneous body,
we may evidently regard dx2

dx1
, . . .

dz2

dz1
as known for each element of the body,

that is, as known in terms of x2, y2, z2. We shall then have εV 2 in terms of
ηV 2 ,

dx

dx2
, . . .

dz

dz2
, x2, y2, z2; and since the composition of the body is known in

terms of x2, y2, z2, and the density, if not given directly, can be determined
from the density of the homogeneous body in its state of reference px1, y1, z1q,
this is sufficient for determining the equilibrium of any given state of the non-
homogeneous solid.
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An equation, therefore, which expresses for any kind of solid, and with ref-
erence to any determined state of reference, the relation between the quantities
denoted by εV, ηV,

dx

dx1
, . . .

dz

dz1
, involving also the quantities which express the

composition of the body, when that is capable of continuous variation, or any
other equation from which the same relations may be deduced, may be called
a fundamental equation for that kind of solid. It will be observed that the
sense in which this term is here used, is entirely analogous to that in which
we have already applied the term to fluids and solids which are subject only
to hydrostatic pressure.

When the fundamental equation between εV, ηV,
dx

dx1
, . . .

dz

dz1
is known, we

may obtain by differentiation the values of t,XX 1 , . . . ZZ1 in terms of the former
quantities, which will give eleven independent relations between the twenty-one
quantities

εV 1 , ηV 1 ,
dx

dx1
, . . .

dz

dz1
, t, XX 1 , . . . ZZ1 , (415)

which are all that exist, since ten of these quantities are independent. All
these equations may also involve variables which express the composition of
the body, when that is capable of continuous variation.

If we use the symbol ψV 1 to denote the value of ψ (as defined on page 35)
for any element of a solid divided by the volume of the element in the state of
reference, we shall have

ψV 1 “ εV 1 ´ tηV 1 . (416)
The equation (356) may be reduced to the form

δψV 1 “ ´ηV 1δt `
ÿ ÿ1

ˆ

XX 1δ
dx

dx1

˙

. (417)

Therefore, if we know the value of ψV 1 in terms of the variables t dx

dx1
, . . .

dz

dz1
,

together with those which express the composition of the body, we may obtain
by differentiation the values of ηV 1 , XX 1 , . . . ZZ1 in terms of the same variables.
This will make eleven independent relations between the same quantities as
before, except that we shall have ψV 1 instead of εV 1 . Or if we eliminate ψV 1 by
means of equation (416), we shall obtain eleven independent equations between
the quantities in (415) and those which express the composition of the body.
An equation, therefore, which determines the value of ψV 1 as a function of the
quantities t, dx

dx1
, . . .

dz

dz1
, and the quantities which express the composition of

the body when it is capable of continuous variation, is a fundamental equation
for the kind of solid to which it relates.

In the discussion of the conditions of equilibrium of a solid, we might have
started with the principle that it is necessary and sufficient for equilibrium that
the temperature shall be uniform throughout the whole mass in question, and
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that the variation of the force-function p´ψq of the same mass shall be null or
negative for any variation in the state of the mass not affecting its temperature.
We might have assumed that the value of ψ for any same element of the solid
is a function of the temperature and the state of strain, so that for constant
temperature we might write

δψV 1 “
ÿ ÿ1

ˆ

XX 1δ
dx

dx1

˙

,

the quantities XX 1 , . . . ZZ1 , being defined by this equation. This would be only
a formal change in the definition of XX 1 , . . . ZZ1 and would not affect their
values, for this equation holds true of XX 1 , . . . ZZ1 as defined by equation (355).
With such data, by transformations similar to those which we have employed,
we might obtain similar results.∗ It is evident that the only difference in the
equations would be that ψV would take the place of εV, and that the terms
relating to entropy would be wanting. Such a method is evidently preferable
with respect to the directness with which the results are obtained. The method
of this paper shows more distinctly the role of energy and entropy in the
theory of equilibrium, and can be extended more naturally to those dynamical
problems in which motions take place under the condition of constancy of
entropy of the elements of a solid (as when vibrations are propagated through
a solid), just as the other method can be more naturally extended to dynamical
problems in which the temperature is constant. (See note on page 36.)

We have already had occasion to remark that the state of strain of any
element considered without reference to directions in space is capable of only
six independent variations. Hence, it must be possible to express the state of
strain of an element by six functions of dx

dx
, . . .

dz

dz1
, which are independent of

the position of the element. For these quantities we may choose the squares
of the ratios of elongation of lines parallel to the three co-ordinate axes in the
state of reference, and the products of the ratios of elongation for each pair
of these lines multiplied by the cosine of the angle which they include in the
variable state of the solid. If we denote these quantities by A,B,C, a, b, c we
shall have

A “
ÿ

ˆ

dx

dx1

˙2

, B “
ÿ

ˆ

dx

dy1

˙2

, C “
ÿ

ˆ

dx

dz1

˙2

, (418)

a “
ÿ

ˆ

dx

dy1

dx

dz1

˙

, b “
ÿ

ˆ

dx

dz1

dx

dx1

˙

, c “
ÿ

ˆ

dx

dx1

dx

dy1

˙

. (419)

∗ For an example of this method, see Thomson and Tait’s Natural Philosophy, vol. i, p. 705. With
regard to the general theory of elastic solids, compare also Thomson’s memoir ”On the Thermo-elastic and
Thermo-magnetic Properties of Matter” in the Quarterly Journal of Mathematica, vol. i, p. 5. (I855), and
Green’s memoirs on the propagation, reflection, and refraction of light in the Transactions of the Cambridge
Philosophical Society, vol, rii.
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The determination of the fundamental equation for a solid is thus reduced
to the determination of the relation between εV 1 , ηV 1 , A,B,C, c, b, c, or of the
relation between ψV 1 , t, A,B,C, c, b, c.

In the case of isotropic solids, the state of strain of an element, so far as
it can affect the relation of εV 1 and ηV 1 , or of ψV 1 and t, is capable of only
three independent variations. This appears most distinctly as a consequence
of the proposition that for any given strain of an element there are three lines
in the element which are at right angles to one another both in its unstrained
and in its strained state. If the unstrained element is isotropic, the ratios of
elongation for these three lines must with ηV 1 determine the value εV 1 , or with
t determine the value of ψV 1 .

To demonstrate the existence of such lines, which are called the principal
axes of strain, and to find the relations of the elongations of such lines to the
quantities dx

dx1
, . . .

dz

dz1
, we may proceed as follows. The ratio of elongation r

of any line of which α1, β1, γ1 are the direction-cosines in the state of reference
is evidently given by the equation

r2 “

ˆ

dx

dx1
α1 `

dx

dy1
β1 `

dx

dz1
γ1

˙2

`

ˆ

dy

dx1
α1 `

dy

dy1
β1 `

dy

dz1
γ1

˙2

`

ˆ

dz

dx1
α1 `

dz

dy1
β1 `

dz

dz1
γ1

˙2

(420)

Now the proposition to be established is evidently equivalent to this — that
it is always possible to give such directions to the two systems of rectangular
axes X 1, Y 1, Z 1, and X,Y, Z, that

dx

dy1
“ 0,

dx

dz1
“ 0,

dy

dz1
“ 0,

dy

dx1
“ 0,

dz

dx1
“ 0,

dz

dy1
“ 0.

(420)

We may choose a line in the element for which the value of r is at least as
great as for any other, and make the axes of X and X 1 parallel to this line in
the strained and unstrained states respectively.

Then
dy

dx1
“ 0,

dz

dx1
“ 0. (422)

Moreover, if we write d pr2q

dα1
,
d pr2q

dβ1
,
d pr2q

dγ1
for the differential coefficients ob-

tained from (420) by treating α1, β1, γ1 as independent variables.
d pr2q

dα1
dα1 `

d pr2q

dβ1
dβ1 `

d pr2q

dγ1
dγ1 “ 0,
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when
α1dα1 ` β1dβ1 ` γ1dγ1 “ 0,

and
α1 “ 1, β1 “ 0, γ1 “ 0.

That is,
d pr2q

dβ1
“ 0, and d pr2q

dγ1
“ 0,

when
α1 “ 1, β1 “ 0, γ1 “ 0.

Hence,
dx

dy1
“ 0,

dx

dz1
“ 0. (423)

Therefore a line of the element which in the unstrained state is perpendicular
to X 1 is perpendicular to X in the strained state. Of all such lines we may
choose one for which the value of r is at least as great as for any other, and
make the axes of Y 1 and Y parallel to this line in the unstrained and in the
strained state respectively. Then

dz

dy1
“ 0 (424)

and it may easily be shown by reasoning similar to that which has just been
employed that

dy

dz1
“ 0. (425)

Lines parallel to the axes of X 1, Y 1, and Z 1 in the unstrained body will therefore
be parallel to X,Y , and Z in the strained body, and the ratios of elongation
for such lines will be

dx

dx1
,
dy

dy1
,
dz

dz1
.

These lines have the common property of a stationary value of the ratio of
elongation for varying directions of the line. This appears from the form to
which the general value of r2 is reduced by the positions of the co-ordinate
axes, viz.,

r2 “

ˆ

dx

dx1

˙2

α12 `

ˆ

dy

dy1

˙2

β12 `

ˆ

dz

dz1

˙2

γ12.

Having thus proved the existence of lines, with reference to any particular
strain, which have the properties mentioned, let us proceed to find the relations
between the ratios of elongation for these lines (the principal axes of strain)
and the quantities dx

dx1
, . . .

dz

dz1
under the most general supposition with respect

to the position of the co-ordinate axes.
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For any principal axis of strain we have
d pr2q

dα1
dα1 `

d pr2q

dβ1
dβ1 `

d pr2q

dγ1
dγ1 “ 0,

when
α1dα1 ` β1dβ1 ` γ1dγ1 “ 0,

the differential coefficients in the first of these equations being determined from
(420) as before. Therefore,

1

α1

d pr2q

dα1
“

1

β1

d pr2q

dβ1
“

1

γ1

d pr2q

dy1
. (426)

From (420) we obtain directly
α1

2

d pr2q

dα1
`
β1

2

d pr2q

dβ1
`
γ1

2

d pr2q

dγ1
“ r2. (427)

From the two last equations, in virtue of the necessary relation α12`β12`γ12 “

1, we obtain
1

2

d pr2q

dα1
“ α1r2,

d pr2q

dβ1
“ βr2,

d

2

d pr2q

dγ1
“ γ1r2, (428)

or, if we substitute the values of the differential coefficients taken from (420),

α1
ÿ

ˆ

dx

dx1

˙2

` β1
ÿ

ˆ

dx

dx1

dx

dy1

˙

` γ1
ÿ

ˆ

dx

dx1

dx

dz1

˙

“ α1r2,

α1
ÿ

ˆ

dx

dy1

dx

dx1

˙

` β1
ÿ

ˆ

dx

dy1

˙2

` γ1
ÿ

ˆ

dx

dy1

dx

dz1

˙

“ β1r2,

α1
ÿ

ˆ

dx

dz1

dx

dx1

˙

` β1
ÿ

ˆ

dx

dz1

dx

dy1

˙

` γ1
ÿ

ˆ

dx

dz1

˙2

“ γ1r2.

(429)

If we eliminate α1, β1, γ1 from these equations, we may write the result in the
form,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ř

ˆ

dx

dx1

˙2

´ r2
ř

ˆ

dx

dx1

dx

dy1

˙

ř

ˆ

dx

dx1

dx

dz1

˙

ř

ˆ

dx

dy1

dx

dx1

˙

ř

ˆ

dx

dy1

˙2

´ r2
ř

ˆ

dx

dy1

dx

dz1

˙

ř

ˆ

dx

dz1

dx

dx1

˙

ř

ˆ

dx

dz1

dx

dy1

˙

ř

ˆ

dx

dz1

˙2

´ r2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 (430)

We may write
´r6 ` Er4 ´ Fr2 ` G “ 0. (431)

Then
E “

ÿ1 ÿ

ˆ

dx

dx1

˙2

(432)

159



Also∗

F “
ÿ1

#

ÿ

ˆ

dx

dx1

˙2
ÿ

ˆ

dx

dy1

˙2

´
ÿ

ˆ

dx

dx1

dx

dy1

˙

ÿ

ˆ

dx

dx1

dx

dy1

˙

+

“
ÿ1 ÿ

#

ˆ

dx

dx1

˙2
ÿ

ˆ

dx

dy1

˙2

´
dx

dx1

dx

dy1

ÿ

ˆ

dx

dx1

dx

dy1

˙

+

“
ÿ1 ÿ

#

ˆ

dx

dx1

˙2 ˆ

dy

dy1

˙2

`

ˆ

dx

dx1

˙2 ˆ

dz

dy1

˙2

´
dx

dx1

dx

dy1

dy

dx1

dy

dy1
´

dx

dx1

dx

dy1

dz

dx1

dz

dy1

+

“
ÿ1 ÿ

#

ˆ

dx

dx1

˙2 ˆ

dy

dy1

˙2

`

ˆ

dy

dx1

˙2 ˆ

dx

dy1

˙2

´ 2
dx

dx1

dx

dy1

dy

dx1

dy

dy1

+

“
ÿ1 ÿ

ˆ

dx

dx1

dy

dy1
´

dy

dx1

dx

dy1

˙2

(433)
This may also be written

F “
ÿ1 ÿ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dx

dx1

dx

dy1

dy

dx1

dy

dy1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(434)

In the reduction of the value of G, it will be convenient to use the symbol
ř

3`3

to denote the sum of the six terms formed by changing x, y, z, into y, z, x; z, x,
y; x, z, y; y, x, z; and z, y, x; and the symbol

ř

3´3

in the same sense except that

the last three terms are to be taken negatively; also to use
ÿ1

3´3

in a similar

sense with respect to x1, y1, z1; and to use x1, y1, z1 as equivalent to x1, y1, z1,
except that they are not to be affected by the sign of summation. With this
understanding we may write

G “
ÿ1

3´3

"

ÿ

ˆ

dx

dx1

dz

dx1

˙

ÿ

ˆ

dx

dy1

dx

dy1

˙

ÿ

ˆ

dx

dz1

dx

dz1

˙*

. (435)

In expanding the product of the three sums, we may cancel on account of the
sign

ÿ1

3´3

the terms which do not contain all the three expressions dx, dy, and

∗ The values of F and G given in equations (434) and (438), which are here deduced at length, may
be derived from inspection of equation (430) by means of the usual theorems relating to the multiplication
of determinant. See Salmon’s Lessons Introductory to the Modern Higher Algebra, 2nd ed. Lesson III; or
Baltzers Theorie und Anwendung der Determinanten, §5.
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dz. Hence we may write

G “

1
ÿ1

3´3

ÿ

3`3

ˆ

dx

dx1

dx

dx1

dy

dy1

dy

dy1

dz

dz1

dz

dz1

˙

“
ÿ

3`3

˜

dx

dx1

dy

dY 1

dz

dZ 1

ÿ1

3´3

ˆ

dx

dx1

dy

dy1

dz

dz1

˙

+

“
ÿ

3´3

ˆ

dx

dx1

dy

dy1

dz

dz1

˙

ÿ1

3´3

ˆ

dx

dx1

dy

dy1

dz

dz1

˙

.

(436)

Or, if we set

H “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dx

dx1

dx

dy1

dx

dz1

dy

dx1

dy

dy1

dy

dz1

dz

dx1

dz

dy1

dz

dz1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(437)

we shall have
G “ H2. (438)

It will be observed that F represents the sum of the squares of the nine mi-
nors which can be formed from the determinant in (437), and that E represents
the sum of the squares of the nine constituents of the same determinant.

Now we know by the theory of equations that equation (431) will be satisfied
in general by three different values of r2, which we may denote by r22, r

2
2, r

2
3,

and which must represent the squares of the ratios of elongation for the three
principal axes of strain; also that E,F,G are symmetrical functions of r21, r23, r23,
viz.,

E “r21 ` r22 ` r23,

F “r21r
2
2 ` r22r

2
3 ` r23r

2
1,

G “r21r
2
2r

2
3

(439)

Hence, although it is possible to solve equation (431) by the use of trigonomet-
rical functions, it will be more simple to regard εV as a function of ηV and the
quantities E,F,G (or H ), which we have expressed in terms of dx

dx1
, . . .

dz

dz1
.

Since εV 1 is a single-valued function of ηV 1 and r21, r22, r23 (with respect to all the
changes of which the body is capable), and a symmetrical function with respect
to r21, r22, r23, and since r21, r23, r23 are collectively determined without ambiguity
by the values of E,F , and H, the quantity εV 1 must be a single-valued func-
tion of ηV 1 , E, F , and H. The determination of the fundamental equation for
isotropic bodies is therefore reduced to the determination of this function, or
(as appears from similar considerations) the determination of ψV 1 as a function
of t, E, F , and H.
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It appears from equations (439) that E represents the sum of the squares
of the ratios of elongation for the principal axes of strain, that F represents
the sum of the squares of the ratios of enlargement for the three surfaces
determined by these axes, and that G represents the square of the ratio of
enlargement of volume. Again, equation (432) shows that E represents the
sum of the squares of the ratios of elongation for lines parallel to X 1, Y 1, and
Z 1; equation (434) shows that F represents the sum of the squares of the ratios
of enlargement for surfaces parallel to the planes X 1-Y 1, Y 1-Z 1, Z 1-X 1; and
equation (438), like (439), shows that G represents the square of the ratio of
enlargement of volume. Since the position of the co-ordinate axes is arbitrary,
it follows that the sum of the squares of the ratios of elongation or enlargement
of three lines or surfaces which in the unstrained state are at right angles to
one another, is otherwise independent of the direction of the lines or surfaces.
Hence, 1

3
E and 1

3
F r are the mean squares of the ratios of linear elongation and

of superficial enlargement, for all possible directions in the unstrained solid.
There is not only a practical advantage in regarding the strain as determined

by E,F , and H, instead of E,F , and G, because H is more simply expressed
in terms of dx

dx1
, . . .

dz

dz1
, but there is also a certain theoretical advantage on the

side of E,F,H. If the systems of co-ordinate axes X,Y, Z, and X 1, Y 1, Z 1, are
either identical or such as are capable of superposition, which it will always
be convenient to suppose, the determinant H will always have a positive value
for any strain of which a body can be capable. But it is possible to give to
x, y, z such values as functions of x1, y1, z1 that H shall have a negative value.
For example, we may make

x “ x1, y “ y1, z “ ´z1. (440)

This will give H “ ´1, while

x “ x1, y “ y1, z “ z1 (441)

will give H “ 1. Both (440) and (441) give G “ 1. Now although such a
change in the position of the particles of a body as is represented by (440)
cannot take place while the body remains solid, yet a method of representing
strains may be considered incomplete, which confuses the cases represented by
(440) and (441).

We may avoid all such confusion by using E,F , and H to represent a
strain. Let us consider an element of the body strained which in the state
px1, y1, z1q is a cube with its edges parallel to the axes of X 1, Y 1, Z 1, and call
the edges dx1, dy1, dz1 according to the axes to which they are parallel, and
consider the ends of the edges as positive for which the values of x1, y1, or z1

are the greater. Whatever may be the nature of the parallelepiped in the state
px, y, zq which corresponds to the cube dx1, dy1, dz1 and is determined by the
quantities dx

dx1
, . . .

dz

dz1
, it may always be brought by continuous changes to the
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form of a cube and to a position in which the edges dx1, dy1 shall be parallel
to the axes of X and Y , the positive ends of the edges toward the positive
directions of the axes, and this may be done without giving the volume of the
parallelepiped the value zero, and therefore without changing the sign of H.
Now two cases are possible; —the positive end of the edge dz1 may be turned
toward the positive or toward the negative direction of the axis of Z. In the
first case, H is evidently positive; in the second, negative. The determinant
H will therefore be positive or negative, we may say, if we choose, that the
volume will be positive or negative, —according as the element can or cannot
be brought from the state px, y, zq to the state px1, y1, z1q by continuous changes
without giving its volume the value zero.

If we now recur to the consideration of the principal axes of strain and the
principal ratios of elongation r1, r2, r3, and denote by U1, U2, U3 and U 1

1, U
1
2, U

1
3

the principal axes of strain in the strained and unstrained element respectively,
it is evident that the sign of r1, for example, depends upon the direction in
U1 which we regard as corresponding to a given direction in U 1

1. If we choose
to associate directions in these axes so that r1, r2, r3 shall all be positive, the
positive or negative value of H will determine whether the system of axes
U1, U1, U3 is or is not capable of superposition upon the system U 1

1, U
1
2, U

1
3 so

that corresponding directions in the axes shall coincide. Or, if we prefer to
associate directions in the two systems of axes so that they shall be capable
of superposition, corresponding directions coinciding, the positive or negative
value of H will determine whether an even or an odd number of the quantities
r1, r2, r3 are negative. In this case we may write

r1r2r3 “ H “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dx

dx1

dx

dy1

dx

dz
dy

dx1

dy

dy1

dy

dz1

dz

dx1

dz

dy1

dz

dz1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(442)

It will be observed that to change the signs of two of the quantities r1, r2, r3
is simply to give a certain rotation to the body without changing its state of
strain.

Whichever supposition we make with respect to the axes U1, U2, U3, it is
evident that the state of strain is completely determined by the values E,F ,
and H, not only when we limit ourselves to the consideration of such strains
as are consistent with the ides of solidity, but also when we regard any values
of dx

dx1
, . . .

dz

dz1
as possible.

Approximative Formula. —For many purposes the value of εV 1 for an
isotropic solid may be represented with sufficient accuracy by the formula

εV 1 “ i1 ` e1E ` f 1F ` h1H, (443)
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where i1, e1, f 1, and h1 denote functions of ηV 1 ; or the value of ψV 1 by the formula
ψV 1 “ i ` eE ` fF ` hH (444)

where i, e, f , and h denote functions of t. Let us first consider the second of
these formula. Since E,F , and H are symmetrical functions of r1, r2, r3, if ψr
is any function of t, E, F,H , we must have

dψV 1

dr1
“

dψV 1

dr2
“

dψV 1

dr3
,

d2ψV 1

dr21
“

d2ψV 1

dr22
“

d2ψV 1

dr3
,

d2ψV 1

dr1dr2
“

d2ψV 1

dr2dr3
“

d2ψV 1

dr3dr1

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

(445)

whenever r1 “ r2 “ r3 —Now i, e, f , and h may be determined (as functions
of t ) so as to give to

ψV,
dψV

dr1
,
2ψV

dr21
,
d2ψV

dr1dr2
their proper values at every temperature for some isotropic state of strain,
which may be determined by any desired condition. We shall suppose that
they are determined so as to give the proper values to ψV 1 , etc., when the
stresses in the solid vanish. If we denote by r0 the common value of r1, r2, r3
which will make the stresses vanish at any given temperature, and imagine the
true value of ψV 1 , and also the value given by equation (444) to be expressed
in terms of the ascending powers of

r1 ´ r0, r2 ´ r0, r3 ´ r0, (446)
it is evident that the expressions will coincide as far as the terms of the second
degree inclusive. That is, the errors of the values of ψV 1 given by equation
(444) are of the same order of magnitude as the cubes of the above differences.
The errors of the values of

dψV 1

dr1
,
dψV 1

dr2
,
dψV 1

dr3

will be of the same order of magnitude as the squares of the same differences.
Therefore, since

dψV 1

d
dx

dx1

“
dψV 1

dr1

dr1

d
dx

dx1

`
dψV 1

dr2

dr2

d
dx

dx1

`
dψV 1

dr3

dr3

d
dx

dx1

(447)

whether we regard the true value of ψV 1 or the value given by equation (444),
and since the error in (44) does not affect the values of

dr1

d
dx

dx1

,
dr2

d
dx

dx1

,
dr3

d
dx

dx1
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which we may regard as determined by equations (431), (432), (434), (437)
and (438), the errors in the values of XX 1 derived from (444) will be of the
same order of magnitude as the squares of the differences in (446). The same
will be true with respect to XY 1 , XZ1 , YX 1 , etc., etc.

It will be interesting to see how the quantities e, f , and h are related to those
which most simply represent the elastic properties of isotropic solids. If we
denote by V and R the elasticity of volume and the rigidity∗ (both determined
under the condition of constant temperature and for states of vanishing stress),
we shall have as definitions

V “ ´v

ˆ

dp

dv

˙

t

when v “ r30v
1, (448)

where p denotes a uniform pressure to which the solid is subjected, v its volume,
and v1its volume in the state of reference; and

r0R “
dXY 1

d
dx

dy1

“
d2ψV 1

ˆ

d
dx

dy1

˙2 ,

when dx

dx1
“

dy

dy1
“

dz

dz1
“ r0,

and dx

dy1
“

dx

dz1
“

dy

dz1
“

dy

dx1
“

dz

dx1
“

dz

dy1
“ 0.

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

(449)

Now when the solid is subject to uniform pressure on all sides, if we consider
so much of it as has the volume unity in the state of reference, we shall have

r1 “ r2 “ r3 “ v
1
3 , (450)

and by (444) and (439),

ψV 1 “ i ` 3ev
2
3 ` 3fv

4
3 ` hv. (451)

Hence, by equation (88), since ψV 1 is equivalent to ψ,

´p “

ˆ

dψ

dv

˙

t

“ 2ev´
1
3 ` 4fv

1
3 ` h, (452)

´v

ˆ

dp

dv

˙

t

“ ´
2

3
ev´

1
3 `

4

3
fv

1
3 ; (453)

and by (448),
V “ ´

2

3

e

r0
`

4

3
fr0 (454)

∗ See Thomson and Tait’s Natural Philosophy, vol. i, p. 711.
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To obtain the value of R in accordance with the definition (449), we may
suppose the values of E,F , and H given by equations (432), (434), and (437)
to be substituted in equation (444). This will give for the value of R

R “
2e

r0
` 2fr0 (455)

Moreover, since p must vanish in (452) when v “ r0
3, we have

2e ` 4fr20 ` hr0 “ 0. (456)

From the three last equations may be obtained the values of e, f, h, in terms
of r0, V , and R; viz.

e “
1

3
r0R ´

1

2
r0V, f “

R ` 3V

6r0
, h “ ´

4

3
R ´ V. (457)

The quantity r0, like R and V , is a function of the temperature, the differential
coefficient d log r0

dt
representing the rate of linear expansion of the solid when

without stress.
It will not be necessary to discuss equation (443) at length, as the case is

entirely analogous to that which has just been treated. (It must be remembered
that ηV 1 , in the discussion of (443), will take the place everywhere of the
temperature in the discussion of (444).) If we denote by V 1 and R1 the elasticity
of volume and the rigidity, both determined under the condition of constant
entropy, (i.e., of no transmission of heat,) and for states of vanishing stress,
we shall have the equations:-

V 1 “ ´
2e1

3r0
`

4

3
f 1r0, (458)

R1 “
2e1

r0
` 2f 1r0, (459)

2e1 ` 4f 1r20 ` h1r0 “ 0. (460)
Whence

e1 “
1

3
r0R

1 ´
1

2
r0V

1, f 1 “
R1 ` 3V 1

6r0
, h1 “ ´

4

3
R1 ´ V 1. (461)

In these equations r0, R1, and V 1 are to be regarded as functions of the quantity
ηV 1 .

If we wish to change from one state of reference to another (also isotropic),
the changes required in the fundamental equation are easily made. If a denotes
the length of any line of the solid in the second state of reference divided by
its length in the first, it is evident that when we change from the first state of
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reference to the second the values of the symbols εV 1 , ηV 1 , ψV 1 , H are divided
by a3, that of E by a2, and that of F by a4. In making the change of the
state of reference, we must therefore substitute in the fundamental equation
of the form (444) a3ψV 1 , a2E, a4F, a3H for ψV 1 , E, F , and H, respectively. In
the fundamental equation of the form (443), we must make the analogous
substitutions, and also substitute a3ηV 1 for ηV 1 . (It will be remembered that
i1, e1, f 1, and h1 represent functions of ηV 1 , and that it is only when their values
in terms of ηV 1 are substituted, that equation (443) becomes a fundamental
equation.)

Concerning Solids which absorb Fluids.

There are certain bodies which are solid with respect to some of their com-
ponents, while they have other components which are fluid. In the following
discussion, we shall suppose both the solidity and the fluidity to be perfect,
so far as any properties are concerned which can affect the conditions of equi-
librium, i.e., we shall suppose that the solid matter of the body is entirely
free from plasticity and that there are no passive resistances to the motion of
the fluid components except such as vanish with the velocity of the motion,
leaving it to be determined by experiment how far and in what cases these
suppositions are realized.

It is evident that equation (356) must hold true with regard to such a body,
when the quantities of the fluid components contained in a given element of
the solid remain constant. Let Γ1

a, Γ1
b, etc., denote the quantities of the several

fluid components contained in an element of the body divided by the volume
of the element in the state of reference, or, in other words, let these symbols
denote the densities which the several fluid components would have, if the body
should be brought to the state of reference while the matter contained in each
element remained unchanged. We may then say that equation (356) will hold
true, when Γ1

a, Γ1
b, etc., are constant. The complete value of the differential of

εV 1 will therefore be given by an equation of the form

dεV 1 “ tdηV 1 `
ÿ ÿ1

ˆ

XX 1d
dx

dx1

˙

` LadΓ
1
a ` LbdΓ

1
b ` etc. (462)

Now when the body is in a state of hydrostatic stress, the term in this equa-
tion containing the signs of summation will reduce to ´pdvV 1 ( vV 1 denoting,
as elsewhere, the volume of the element divided by its volume in the state of
reference). For in this case

XX 1 “ ´p

ˆ

dy

dy1

dz

dz1
´

dz

dy1

dy

dz1

˙

(463)
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ÿ ÿ1
ˆ

XX 1d
dx

dx1

˙

“ ´ p
ÿ ÿ1

"ˆ

dy

dy1

dz

dz1
´

dz

dy1

dy

dz1

˙

d
dx

dx1

*

“ ´ pd

∣∣∣∣∣∣∣∣∣∣∣

dx

dx1

dx

dy1

dx

dz1

dy

dx1

dy

dy1

dy

dz1

dz

dx1

dz

dy1

dz

dz1

∣∣∣∣∣∣∣∣∣∣∣
“ ´ pdvV 1

(464)

We have, therefore, for a state of hydrostatic stress,
dεV 1 “ tdηV 1 ´ pdvV 1 ` LadΓ

1
a ` LbdΓ

1
b ` etc. , (465)

and multiplying by the volume of the element in the state of reference, which
we may regard as constant,

dε “ tdη ´ pdv ` Ladma ` Lbdmb ` etc. (466)
where ε, η, v,ma,mb, etc., denote the energy, entropy, and volume of the el-
ement, and the quantities of its several fluid components. It is evident that
the equation will also hold true, if these symbols are understood as relating
to a homogeneous body of finite size. The only limitation with respect to the
variations is that the element or body to which the symbols relate shall always
contain the same solid matter. The varied state may be one of hydrostatic
stress or otherwise.

But when the body is in a state of hydrostatic stress, and the solid matter
is considered invariable, we have by equation (12)

dε “ tdη ´ pdv ` µadma ` µbdmb ` etc. (467)
It should be remembered that the equation cited occurs in a discussion which
relates only to bodies of hydrostatic stress, so that the varied state as well as
the initial is there regarded as one of hydrostatic stress. But a comparison
of the two last equations shows that the last will hold true without any such
limitation, and moreover, that the quantities La, Lb, etc., when determined for
a state of hydrostatic stress, are equal to the potentials µa, µb, etc.

Since we have hitherto used the term potential solely with reference to
bodies of hydrostatic stress, we may apply this term as we choose with regard
to other bodies. We may therefore call the quantities La, Lb, etc., the potentials
for the several fluid components in the body considered, whether the state of
the body is one of hydrostatic stress or not, since this use of the term involves
only an extension of its former definition. It will also be convenient to use our
ordinary symbol for a potential to represent these quantities. Equation (462)
may then be written

dεV 1 “ tdηV 1 `
ÿ ÿ1

ˆ

XX 1d
dx

dx1

˙

` µadΓ
1
b ` µbdΓ

1
b ` etc. (468)

168



This equation holds true of solids having fluid components without any lim-
itation with respect to the initial state or to the variations, except that the
solid matter to which the symbols relate shall remain the same.

In regard to the conditions of equilibrium for a body of this kind, it is evident
in the first place that if we make Γ1

a,Γ
1
b, etc. constant, we shall obtain from

the general criterion of equilibrium all the conditions which we have obtained
for ordinary solids, and which are expressed by the formula(364), (374), (380),
(382)-(384). The quantities Γ1

1,Γ
1
2, etc., in the last two formula include of

course those which have just been represented by Γ1
a,Γ

1
b, etc., and which relate

to the fluid components of the body, as well as the corresponding quantities
relating to its solid components. Again, if we suppose the solid matter of the
body to remain without variation in quantity or position, it will easily appear
that the potentials for the substances which form the fluid components of the
solid body must satisfy the same conditions in the solid body and in the fluids
in contact with it, as in the case of entirely fluid masses. See eqs. (22).

The above conditions must however be slightly modified in order to make
them sufficient for equilibrium. It is evident that if the solid is dissolved at
its surface, the fluid components which are set free may be absorbed by the
solid as well as by the fluid mass, and in like manner if the quantity of the
solid is increased, the fluid components of the new portion may be taken from
the previously existing solid mass. Hence, whenever the solid components of
the solid body are actual components of the fluid mass, (whether the case is
the same with the fluid components of the solid body or not,) an equation of
the form (383) mast be satisfied, in which the potentials µa, µb, etc., contained
implicitly in the second member of the equation are determined from the solid
body. Also if the solid components of the solid body are all possible but not
all actual components of the fluid mass, a condition of the form (384) must be
satisfied, the values of the potentials in the second member being determined
as in the preceding case.

The quantities.
t, XX 1 , . . . ZZ1 , µa, µb, etc. (469)

being differential coefficients of εV 1 with respect to the variables

ηV 1 ,
dx

dx1
, . . .

dz

dz1
,Γ1

a,Γ
1
b, etc., (470)

will of course satisfy the necessary relations

dt

d
dx

dx1

“
dXX 1

dηV 1

, etc. (471)

This result may be generalized as follows. Not only is the second member
of equation (468) a complete differential in its present form. but it will remain
such if we transfer the sign of differentiation pdq from one factor to the other
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of any term (the sum indicated by the symbol
ř ř1 is here supposed to be

expanded into nine terms), and at the same time change the sign of the term
from ` to ´. For to substitute ´ηV 1dt for tdηV 1 , for example, is equivalent
to subtracting the complete differential d ptηV 1q. Therefore, if we consider the
quantities in (469) and (470) which occur in any same term in equation (468)
as forming a pair, we may choose as independent variables either quantity of
each pair, and the differential coefficient of the remaining quantity of any pair
with respect to the independent variable of another pair will be equal to the
differential coefficient of the remaining quantity of the second pair with respect
to the independent variable of the first, taken positively, if the independent
variables of these pairs are both affected by the sign d in equation (468), or
are neither thus affected, but otherwise taken negatively. Thus

ˆ

dXX 1

dΓ1
a

˙

dx

dx1

“

¨

˚

˝

dµa

d
dx

dx1

˛

‹

‚

Γ1
a

,

ˆ

dXX 1

dµa

˙

dx

dx1

“ ´

¨

˚

˝

dΓa

d
dx

dx1

˛

‹

‚

µa

, (472)

¨

˚

˝

d
dx

dx1

dµa

˛

‹

‚

XX1

“

ˆ

dΓ1
a

dXX 1

˙

µa

,

¨

˚

˝

d
dx

dx1

dΓ1
a

˛

‹

‚

XX1

“ ´

ˆ

dµa
dXX 1

˙

Γa1

(473)

where in addition to the quantities indicated by the suffixes, the following are
to be considered as constant: —either t or ηV 1 , either XV 1 or dx

dy1
, . . . either

ZZ1 or dz

dz1
, either µb or Γ1

b, etc.
It will be observed that when the temperature is constant the conditions

µa “ const., µb “ const., represent the physical condition of a body in contact
with a fluid of which the phase does not vary, and which contains the compo-
nents to which the potentials relate. Also that when Γ1

a, Γ1
b, etc., are constant,

the heat absorbed by the body in any infinitesimal change of condition per
unit of volume measured in the state of reference is represented by tdηV 1 . If
we denote this quantity by dQV 1 , and use the suffix Q to denote the condition
of no transmission of heat, we may write

¨

˚

˝

d log t

d
dx

dx1

˛

‹

‚

Q

“

ˆ

dXX 1

dQV 1

˙

dx

dx1

,

ˆ

d log t

dXX 1

˙

Q

“ ´

¨

˚

˝

d
dx

dx1

dQV 1

˛

‹

‚

XX1

, (474)

ˆ

dQV 1

dXX 1

˙

t

“

¨

˚

˝

d
dx

dx1

d log t

˛

‹

‚

XX1

,

¨

˚

˝

dQV 1

d
dx

dx1

˛

‹

‚

t

“ ´

ˆ

dXX 1

d log t

˙

dx

dx1

, (475)
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where Γ1
a,Γ

1
b, etc., must be regarded as constant in all the equations. and

either XY 1 or dx

dy1
, . . . either ZZ1 or dz

dz1
, in each equation.
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Influence of Surfaces of Discontinuity upon the
Equilibrium of Heterogeneous Masses. —Theory of
Capillarity.

We have hitherto supposed, in treating of heterogeneous masses in contact,
that they might be considered as separated by mathematical surfaces, each
mass being unaffected by the vicinity of the others, so that it might be homo-
geneous quite up to the separating surfaces both with respect to the density of
each of its various components and also with respect to the densities of energy
and entropy. That such is not rigorously the case is evident from the consid-
eration that if it were so with respect to the densities of the components it
could not be so in general with respect to the density of energy, as the sphere
of molecular action is not infinitely small. But we know from observation that
it is only within very small distances of such a surface that any mass is sensi-
bly affected by its vicinity, — a natural consequence of the exceedingly small
sphere of sensible molecular action, —and this fact renders possible a simple
method of taking account of the variations in the densities of the component
substances and of energy and entropy, which occur in the vicinity of surfaces of
discontinuity. We may use this term, for the sake of brevity, without implying
that the discontinuity is absolute, or that the term distinguishes any surface
with mathematical precision. It may be taken to denote the non-homogeneous
film which separates homogeneous or nearly homogeneous masses.

Let us consider such a surface of discontinuity in a fluid mass which is in
equilibrium and uninfluenced by gravity. For the precise measurement of the
quantities with which we have to do, it will be convenient to be able to refer
to a geometrical surface, which shall be sensibly coincident with the physical
surface of discontinuity, but shall have a precisely determined position. For
this end, let us take some point in or very near to the physical surface of
discontinuity, and imagine a geometrical surface to pass through this point
and all other points which are similarly situated with respect to the condition
of the adjacent matter. Let this geometrical surface be called the dividing
surface, and designated by the symbol S. It will be observed that the position
of this surface is as yet to a certain extent arbitrary, but that the directions
of its normals are already everywhere determined, since all the surfaces which
can be formed in the manner described are evidently parallel to one another.
Let us also imagine a closed surface cutting the surface S and including a
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part of the homogeneous mass on each side. We will so far limit the form of
this closed surface as to suppose that on each side of S, as far as there is any
want of perfect homogeneity in the fluid masses, the closed surface is such as
may be generated by a moving normal to S. Let the portion of S which is
included by the closed surface be denoted by S, and the area of this portion
by s. Moreover, let the mass contained within the closed surface be divided
into three parts by two surfaces, one on each side of S, and very near to that
surface, although at such distance as to lie entirely beyond the influence of the
discontinuity in its vicinity. Let us call the part which contains the surface S
(with the physical surface of discontinuity) M, and the homogeneous parts M1

and M2, and distinguish by ε, ε1, ε2, η, η1, η2, m1,m
1
1,m

2
1,m2,m

1
2,m

2
2, etc., the

energies and entropies of these masses, and the quantities which they contain
of their various components.

It is necessary, however, to define more precisely what is to be understood
in cases like the present by the energy of masses which are only separated
from other masses by imaginary surfaces. A part of the total energy which
belongs to the matter in the vicinity of the separating surface, relates to pairs
of particles which are on different sides of the surface, and such energy is not
in the nature of things referable to either mass by itself. Yet, to avoid the
necessity of taking separate account of such energy, it will often be convenient
to include it in the energies which we refer to the separate masses. When there
is no break in the homogeneity at the surface, it is natural to treat the energy
as distributed with a uniform density. This is essentially the case with the
initial state of the system which we are considering, for it has been divided by
surfaces passing in general through homogeneous masses. The only exception
—that of the surface which cuts at right angles the non-homogeneous film—
(apart from the consideration that without any important loss of generality
we may regard the part of this surface within the film as very small compared
with the other surfaces) is rather apparent than real, as there is no change in
the state of the matter in the direction perpendicular to this surface. But in the
variations to be considered in the state of the system, it will not be convenient
to limit ourselves to such as do not create any discontinuity at the surfaces
bounding the masses M,M1,M2; we must therefore determine how we will
estimate the energies of the masses in case of such infinitesimal discontinuities
as may be supposed to arise. Now the energy of each mass will be most easily
estimated by neglecting the discontinuity, i.e., if we estimate the energy on the
supposition that beyond the bounding surface the phase is identical with that
within the surface. This will evidently be allowable, if it does not affect the
total amount of energy. To show that it does not affect this quantity, we have
only to observe that, if the energy of the mass on one side of a surface where
there is an infinitesimal discontinuity of phase is greater as determined by this
rule than if determined by any other (suitable) rule, the energy of the mass on
the other side must be less by the same amount when determined by the first
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rule than when determined by the second, since the discontinuity relative to
the second mass is equal but opposite in character to the discontinuity relative
to the first.

If the entropy of the mass which occupies any one of the spaces considered
is not in the nature of things determined without reference to the surrounding
masses, we may suppose a similar method to be applied to the estimation of
entropy.

With this understanding, let us return to the consideration of the equilib-
rium of the three masses M,M1, and M2. We shall suppose that there are no
limitations to the possible variations of the system due to any want of perfect
mobility of the components by means of which we express the composition of
the masses, and that these components are independent. i.e., that no one of
them can be formed out of the others.

With regard to the mass M, which includes the surface of discontinuity, it is
necessary for its internal equilibrium that when its boundaries are considered
constant, and when we consider only reversible variations (i.e., those of which
the opposite are also possible), the variation of its energy should vanish with
the variation of its entropy and of the quantities of its various components.
For changes within this mass will not affect the energy or the entropy of the
surrounding masses (when these quantities are estimated on the principle which
we have adopted), and it may therefore be treated as an isolated system. For
fixed boundaries of the mass M. and for reversible variations, we may therefore
write

δε “ A0δη ` A1δm1 ` A2δm2 ` etc. (476)
where A0, A1, A2, etc., are quantities determined by the initial (unvaried) con-
dition of the system. It is evident that A0 is the temperature of the lamelliform
mass to which the equation relates, or the temperature at the surface of dis-
continuity. By comparison of this equation with (12) it will be seen that the
definition of A1, A2, etc., is entirely analogous to that of the potentials in
homogeneous masses, although the mass to which the former quantities relate
is not homogeneous, while in our previous definition of potentials, only homo-
geneous masses were considered. By a natural extension of the term potential,
we may call the quantities A1, A2, etc. the potentials at the surface of disconti-
nuity. This designation will be farther justified by the fact, which will appear
hereafter, that the value of these quantities is independent of the thickness of
the lamina (M) to which they relate. If we employ our ordinary symbols for
temperature and potentials, we may write

δε “ tδη ` µ1δm1 ` µ2δm2 ` etc. (477)

If we substitute ŕ for “ in this equation, the formula will hold true of
all variations whether reversible or not:∗ for if the variation of energy could

∗ To illustrate the difference between variations which are reversible, and those which are not, we may
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have a value less than that of the second member of the equation, there must
be variation in the condition of M in which its energy is diminished without
change of its entropy or of the quantities of its various components.

It is important, however, to observe that for any given values of δη, δm1,
δm2, etc., while there may be possible variations of the nature and state of M
for which the value of δε is greater than that of the second member of (477),
there must always be possible variations for which the value of δε is equal to
that of the second member. It will be convenient to have a notation which
will enable us to express this by an equation. Let δε denote the smallest value
(i.e., the value nearest to ´8 ) of δε consistent with given values of the other
variations, then

δε “ tδη ` µ1δm1 ` µ2δm2 ` etc. (478)

For the internal equilibrium of the whole mass which consists of the parts
M,M1,M2, it is necessary that

δε ` δε1 ` δε2 ŕ 0 (479)

for all variations which do not affect the enclosing surface or the total entropy
or the total quantity of any of the various components. If we also regard the
surfaces separating M1,M

1, and M2 as invariable, we may derive from this
condition, by equations (478) and (12), the following as a necessary condition
of equilibrium:

tδη ` µ1δm1 ` µ2δm2 ` etc.
`t1δη1 ` µ1

1δm
1
1 ` µ1

2δm
1
2 ` etc.

`t2δη2 ` µ2
1δm

2
1 ` µ2

2δm
2
2 ` etc. ŕ 0,

(480)

the variations being subject to the equations of condition

δη ` δη1 ` δη2 “ 0,

δm1 ` δm1
1 ` δm2

1 “ 0,

δm2 ` δm1
2 ` δm2

2 “ 0

etc.

,

/

/

/

.

/

/

/

-

(481)

conceive of two entirely different substances meeting in equilibrium at a mathematical surface without being
at all mixed. We may also conceive of them as mixed in a thin film about the surface where they meet,
and then the amount of mixture is capable of variation both by increase and by diminution. But when they
are absolutely unmixed, the amount of mixture can be increased, but is incapable of diminution, and it is
then consistent with equilibrium that the value of δε (for a variation of the system in which the substances
commence to mix) should be greater than the second member of (477). It is not necessary to determine
whether precisely such cases actually occur: but it would not be legitimate to overlook the possible occurrence
of cases in which variations may be possible while the opposite variations are not.

It will be observed that the sense in which the term reversible is here used is entirely different from that
in which it is frequently used in treatises on thermodynamics, where a process by which a system is brought
from a state A to a state B is called reversible, to signify that the system may also be brought from the
state B to the state A through the same series of intermediate states taken in the reverse order by means of
external agencies of the opposite character. The variation of a system from a state A to a state B (supposed
to differ infinitely little from the first) is here called reversible when the system is capable of another state
B1 which bears the same relation to the state A that A bears to B.
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It may also be the case that some of the quantities δm1
1, δm

2
1, δm1

2, δm
2
2, etc.,

are incapable of negative values or can only have the value zero. This will be
the case when the substances to which these quantities relate are not actual
or possible components of M1 or M2. (See page 10.) To satisfy the above
condition it is necessary and sufficient that

t “ t1 “ t2, (482)

µ1
1δm

1
1 ŕ µ1δm

1
1, µ1

2δm
1
2 ŕ µ2δm

1
2, etc., (483)

µ2
1δm

2
1 ŕ µ1δm

2
1, µ2

2δm
2
2 ŕ µ2δm

2
2, etc. (484)

It will be observed that, if the substance to which µ1, for instance, relates is
an actual component of each of the homogeneous masses, we shall have µ1 “

µ1
1 “ µ2

1. If it is an actual component of the first only of these masses, we shall
have µ1 “ µ1

1. If it is also a possible component of the second homogeneous
mass, we shall also have µ1 ŕ µ2

1. If this substance occurs only at the surface
of discontinuity, the value of the potential µ1 will not be determined by any
equation, but cannot be greater than the potential for the same substance in
either of the homogeneous masses in which it may be a possible component.

It appears, therefore, that the particular conditions of equilibrium relating
to temperature and the potentials which we have before obtained by neglecting
the influence of the surfaces of discontinuity (pp. 10, 12, 20 ) are not invalidated
by the influence of such discontinuity in their application to homogeneous parts
of the system bounded like M1 and M2 by imaginary surfaces lying within the
limits of homogeneity, — a condition which may be fulfilled by surfaces very
near to the surfaces of discontinuity. It appears also that similar conditions will
apply to the non-homogeneous films like M, which separate such homogeneous
masses. The properties of such films, which are of course different from those
of homogeneous masses, require our farther attention.

The volume occupied by the mass M is divided by the surface S into two
parts, which we will call v3 and v4, v3 lying next to M1, and v4 to M2.
Let us imagine these volumes filled by masses having throughout the same
temperature, pressure and potentials, and the same densities of energy and
entropy, and of the various components, as the masses M1 and M2 respectively.
We shall then have, by equation (12), if we regard the volumes as constant,

δε3 “ t1δη3 ` µ1
1δm

3
1 ` µ1

2δm
3
2 ` etc., (485)

δε4 “ t2δη4 ` µ2
1δm

4
1 ` µ2

2δm
4
2 ` etc. ; (486)

whence, by (482)-(484), we have for reversible variations

δε3 “ tδη3 ` µ1δm
3
1 ` µ2δm

3
2 ` etc. , (487)
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δε4 “ tδη4 ` µ1δm
4
1 ` µ2δm

4
2 ` etc. (488)

From these equations and (477), we have for reversible variations

δ pε ´ ε3 ´ ε4q “ tδ pη ´ η3 ´ η4q

` µ1δ pm1 ´ m3
1 ´ m4

1 q ` µ2δ pm2 ´ m3
2 ´ m4

2 q ` etc.
(489)

Or, if we set∗

εS “ ε ´ ε3 ´ ε4, ηS “ η ´ η3 ´ η4, (490)

mS
1 “ m1 ´ m3

1 ´ m4
1 , mS

1 “ m2 ´ m3
1 ´ m4

2 , etc. (491)
we may write

δεS “ tδηS ` µ1δm
S
1 ` µ2δm

S
2 ` etc. (492)

This is true of reversible variations in which the surfaces which have been
considered are fixed. It will be observed that εS denotes the excess of the
energy of the actual mass which occupies the total volume which we have
considered over that energy which it would have, if on each side of the surface
S the density of energy had the same uniform value quite up to that surface
which it has at a sensible distance from it; and that ηS,mS

1,m
S
2, etc., have

analogous significations. It will be convenient, and need not be a source of any
misconception, to call εS and ηS the energy and entropy of the surface (or the

superficial energy and entropy), ε
S

s
and ηS

s
the superficial densities of energy

and entropy, m
S
1

s
,
mS

2

s
, etc., the superficial densities of the several components.

Now these quantities (εS, ηS,mS
1, etc.) are determined partly by the state

of the physical system which we are considering, and partly by the various
imaginary surfaces by means of which these quantities have been defined. The
position of these surfaces, it will be remembered, has been regarded as fixed
in the variation of the system. It is evident, however, that the form of that
portion of these surfaces which lies in the region of homogeneity on either side
of the surface of discontinuity cannot affect the values of these quantities. To
obtain the complete value of δεS for reversible variations, we have therefore
only to regard variations in the position and form of the limited surface S, as
this determines all of the surfaces in question lying within the region of non-
homogeneity. Let us first suppose the form of S to remain unvaried and only
its position in space to vary, either by translation or rotation. No change in
(492) will be necessary to make it valid in this case. For the equation is valid
if S remains fixed and the material system is varied in position; also, if the
material system and S are both varied in position, while their relative position

∗ It will be understood that the S here used is not an algebraic exponent, but is only intended as a
distinguishing mark. The Roman letter S has not been used to denote any quantity.
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remains unchanged. Therefore, it will be valid if the surface alone varies its
position.

But if the form of S be varied, we must add to the second member of (492)
terms which shall represent the value of

δεS ´ tδηS ´ µ1δm
S
1 ´ µ2δm

S
2 ´ etc.

due to such variation in the form of S. If we suppose S to be sufficiently
small to be considered uniform throughout in its curvatures and in respect to
the state of the surrounding matter, the value of the above expression will be
determined by the variation of its area δs and the variations of its principal
curvatures δc1 and δc2, and we may write

δεS “ tδηS ` µ1δm
S
1 ` µ2δm

S
2 ` etc.

` σδs ` C1δc1 ` C2δc2,
(493)

or
δεS “ tδηS ` µ1δm

S
1 ` µ2δm

S
2 ` etc.

` σδs `
1

2
pC1 ` C2q δ pc1 ` c2q `

1

2
pC1 ´ C2q δ pc1 ´ c2q ,

(494)

σ,C1, and C2 denoting quantities which are determined by the initial state of
the system and the position and form of S. The above is the complete value
of the variation of εS for reversible variations of the system. But it is always
possible to give such a position to the surface S that C1 ` C2 shall vanish.

To show this, it will be convenient to write the equation in the longer form
{see (490), (491)}

δε ´ tδη ´ µ1δm1 ´ µ2δm2 ´ etc.
´ δε3 ` tδη3 ` µ1δm

3
1 ` µ2δm

3
2 ` etc.

´ δε4 ` tδη4 ` µ1δm
4
1 ` µ2δm

4
2 ` etc.

“σδs `
1

2
pC1 ` C2q δ pc1 ` c2q `

1

2
pC1 ´ C2q δ pc1 ´ c2q ,

(495)

i.e., by (482)-(484) and (12),

δε ´ tδη ´ µ1δm1 ´ µ2δm2 ´ etc. ` p1δv3 ` p2δv3

“σδs `
1

2
pC1 ` C2q δ pc1 ` c2q `

1

2
pC1 ´ C2q δ pc1 ´ c2q .

(496)

From this equation it appears in the first place that the pressure is the same
in the two homogeneous masses separated by a plane surface of discontinuity.
For let us imagine the material system to remain unchanged, while the plane
surface S without change of area or of form moves in the direction of its normal.
As this does not affect the boundaries of the mass M.

δε ´ tδη ´ µ1δm1 ´ µ2δm2 ´ etc. “ 0.
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Also δs “ 0, δ pc1 ` c2q “ 0, δ pc1 ´ c2q “ 0, and δv3 “ ´δv4. Hence p1 “ p2,
when the surface of discontinuity is plane.

Let us now examine the effect of different positions of the surface S in the
same material system upon the value of C1 `C2, supposing at first that in the
initial state of the system the surface of discontinuity is plane. Let us give the
surface S some particular position. In the initial state of the system this surface
will of course be plane like the physical surface of discontinuity, to which it is
parallel. In the varied state of the system, let it become a portion of a spherical
surface having positive curvature; and at sensible distances from this surface
let the matter be homogeneous and with the same phases as in the initial state
of the system; also at and about the surface let the state of the matter so far as
possible be the same as at and about the plane surface in the initial state of the
system. (Such a variation in the system may evidently take place negatively
as well as positively, as the surface may be curved toward either side. But
whether such a variation is consistent with the maintenance of equilibrium is
of no consequence, since in the preceding equations only the initial state is
supposed to be one of equilibrium.) Let the surface S, placed as supposed,
whether in the initial or the varied state of the surface, be distinguished by
the symbol S1. Without changing either the initial or the varied state of the
material system, let us make another supposition with respect to the imaginary
surface S. In the unvaried system let it be parallel to its former position but
removed from it a distance λ on the side on which lie the centers of positive
curvature. In the varied state of the system, let it be spherical and concentric
with S1, and separated from it by the same distance λ. It will of course lie
on the same side of S1 as in the unvaried system. Let the surface S, placed
in accordance with this second supposition, be distinguished by the symbol
S2. Both in the initial and the varied state, let the perimeters of S1 and S2 be
traced by a common normal. Now the value of

δε ´ tδη ´ µ1δm1 ´ µ2δm2 ´ etc.

in equation (496) is not affected by the position of S, being determined simply
by the body M: The same is true of p1δv3 ` p2δv4 or p1δ pv3 ` v4q, v3 ` v4

being the volume of M. Therefore the second member of (496) will have the
same value whether the expressions relate to S1 or S2. Moreover, δ pc1 ´ c2q “ 0
both for S1 and S2. If we distinguish the quantities determined for S1 and for
S2 by the marks 1 and 2, we may therefore write

σ1δs1 `
1

2
pC 1

1 ` C 1
2q δ pc1

1 ` c1
2q “ σ2δs2 `

1

2
pC2

1 ` C2
2 q δ pc2

1 ` c2
2q .

Now if we make
δs2 “ 0,

we shall have by geometrical necessity

δs1 “ sλδ pc2
1 ` c2

2q .
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Hence

σ1sλδ pc2
1 ` c2

2q `
1

2
pC 1

1 ` C 1
2q δ pc1

1 ` c1
2q “

1

2
pC2

1 ` C2
2 q δ pc2

1 ` c2
2q .

But
δ pc1

1 ` c1
2q “ δ pc2

1 ` c2
2q .

Therefore,
C 1

1 ` C 1
2 ` 2σ1sλ “ C2

1 ` C2
2 .

This equation shows that we may give a positive or negative value to C2
1 `C2

2

by placing S2 a sufficient distance on one or on the other side of S1. Since
this is true when the (unvaried) surface is plane, it must also be true when
the surface is nearly plane. And for this purpose a surface may be regarded
as nearly plane, when the radii of curvature are very large in proportion to
the thickness of the non-homogeneous film. This is the case when the radii
of curvature have any sensible size. In general, therefore, whether the surface
of discontinuity is plane or curved it is possible to place the surface S so that
C1 ` C2 in equation (494) shall vanish.

Now we may easily convince ourselves by equation (493) that if S is placed
within the non-homogeneous film, and s “ 1, the quantity σ is of the same
order of magnitude as the values of εS, ηS,mS

1,m
S
2, etc., while the values of C1

and C2 are of the same order of magnitude as the changes in the values of the
former quantities caused by increasing the curvature of S by unity. Hence, on
account of the thinness of the non-homogeneous film, since it can be very little
affected by such a change of curvature in S, the values of C1 and C2 must in
general be very small relatively to σ. And hence, if S1 be placed within the
non-homogeneous film, the value of λ which will make C2

1 ` C2
2 vanish must

be very small (of the same order of magnitude as the thickness of the non-
homogeneous film). The position of S, therefore, which will make C1 ` C2 in
(494) vanish, will in general be sensibly coincident with the physical surface of
discontinuity.

We shall hereafter suppose, when the contrary is not distinctly indicated
that the surface S, in the unvaried state of the system, has such a position as to
make C1`C2 “ 0. It will be remembered that the surface S is a part of a larger
surface S, which we have called the dividing surface, and which is coextensive
with the physical surface of discontinuity. We may suppose that the position of
the dividing surface is everywhere determined by similar considerations. This
is evidently consistent with the suppositions made on page 172 with regard to
this surface.

We may therefore cancel the term
1

2
pC1 ` C2q δ pc1 ` c2q

in (494). In regard to the following term, it will be observed that C1 must
necessarily be equal to C2, when c1 “ c2, which is the case when the surface of
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discontinuity is plane. Now on account of the thinness of the non-homogeneous
film, we may always regard it as composed of parts which are approximately
plane. Therefore, without danger of sensible error, we may also cancel the
term

1

2
pC1 ´ C2q δ pc1 ´ c2q .

Equation (494) is thus reduced to the form

δεS “ tδηS ` σδs ` µ1δm
S
1 ` µ2δm

S
2 ` etc. (497)

We may regard this as the complete value of δεS, for all reversible variations
in the state of the system supposed initially in equilibrium, when the dividing
surface has its initial position determined in the manner described.

The above equation is of fundamental importance in the theory of capillar-
ity. It expresses a relation with regard to surfaces of discontinuity analogous
to that expressed by equation (12) with regard to homogeneous masses. From
the two equations may be directly deduced the conditions of equilibrium of
heterogeneous masses in contact, subject or not to the action of gravity, with-
out disregard of the influence of the surfaces of discontinuity. The general
problem, including the action of gravity, we shall take up hereafter: at present
we shall only consider, as hitherto, a small part of a surface of discontinuity
with a part of the homogeneous mass on either side, in order to deduce the
additional condition which may be found when we take account of the motion
of the dividing surface.

We suppose as before that the mass especially considered is bounded by
a surface of which all that lies in the region of non-homogeneity is such as
may be traced by a moving normal to the dividing surface. But instead of
dividing the mass as before into four parts, it will be sufficient to regard it as
divided into two parts by the dividing surface. The energy, entropy, etc., of
these parts, estimated on the supposition that its nature (including density of
energy, etc.) is uniform quite up to the dividing surface, will be denoted by
ε1, η1, etc., ε2, η2, etc. Then the total energy will be εS`ε1 `ε2, and the general
condition of internal equilibrium will be that

δεS ` δε1 ` δε2 ŕ 0, (498)

when the bounding surface is fixed, and the total entropy and total quantities
of the various components are constant. We may suppose ηS, η1, η2,mS

1,m
1
1,

m2
1,m

S
2,m

1
2,m

2
2, etc., to be all constant. Then by (497) and (12) the condition

reduces to
σδs ´ p1δv1 ´ p2δv2 “ 0. (499)

(We may set “ for ŕ, since changes in the position of the dividing surface
can evidently take place in either of two opposite directions.) This equation
has evidently the same form as if a membrane without rigidity and having a
tension σ, uniform in all directions, existed at the dividing surface. Hence the
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particular position which we have chosen for this surface may be called the
surface of tension, and σ the superficial tension. If all parts of the dividing
surface move a uniform normal distance δN , we shall have

δs “ pc1 ` c2q sδN, δv1 “ sδN, δv2 “ ´sδN ;

whence
σ pc1 ` c2q “ p1 ´ p2. (400)

the curvatures being positive when their centers lie on the side to which p1

relates. This is the condition which takes the place of that of equality of
pressure (see pp. 10, 20) for heterogeneous fluid masses in contact, when we
take account of the influence of the surfaces of discontinuity. We have already
seen that the conditions relating to temperature and the potentials are not
affected by these surfaces.

Fundamental Equations for Surfaces of Discontinuity be-
tween Fluid Masses.

In equation (497) the initial state of the system is supposed to be one of
equilibrium. The only limitation with respect to the varied state is that the
variation shall be reversible, i.e., that an opposite variation shall be possible.
Let us now confine our attention to variations in which the system remains in
equilibrium. To distinguish this case, we may use the character d instead of δ,
and write

dεS “ tdηS ` σds ` µ1dm
S
1 ` µ2dm

S
2 ` etc. (501)

Both the states considered being states of equilibrium, the limitation with re-
spect to the reversibility of the variations may be neglected, since the variations
will always be reversible in at least one of the states considered.

If we integrate this equation, supposing the area s to increase from zero to
any finite value s, while the material system to a part of which the equation
relates remains without change, we obtain

εS “ tηS ` σs ` µ1m
S
1 ` µ2m

S
2 ` etc. (502)

which may be applied to any portion of any surface of discontinuity (in equilib-
rium) which is of the same nature throughout, or throughout which the values
of t, σ, µ1, µ2, etc., are constant.

If we differentiate this equation, regarding all the quantities as variable, and
compare the result with (501), we obtain

ηSdt ` sdσ ` mS
1dµ1 ` mS

2dµ2 ` etc. “ 0. (503)
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If we denote the superficial densities of energy, of entropy, and of the several
component substances (see page 176) by εS, ηS,Γ1,Γ2, etc., we have

εS “
εS

s
, ηS “

ηS

s
(504)

Γ1 “
mS

1

s
, Γ2 “

mS
2

s
, etc. (505)

and the preceding equations may be reduced to the form

dεS “ tdηS ` µ1dΓ1 ` µ2dΓ2 ` etc. , (506)

εS “ tηS ` σ ` µ1Γ1 ` µ2Γ2 ` etc. , (507)

dσ “ ´ηSdt ´ Γ1dµ1 ´ Γ2dµ2 ´ etc. (508)

Now the contact of the two homogeneous masses does not impose any re-
striction upon the variations of phase of either, except that the temperature
and the potentials for actual components shall have the same value in both.
[See (482)-(484) and (500).] For however the values of the pressures in the ho-
mogeneous masses may vary (on account of arbitrary variations of the temper-
ature and potentials), and however the superficial tension may vary, equation
(500) may always be satisfied by giving the proper curvature to the surface
of tension, so long, at least, as the difference of pressures is not great. More-
over, if any of the potentials µ1, µ2, etc., relate to substances which are found
only at the surface of discontinuity, their values may be varied by varying
the superficial densities of those substances. The values of t, µ1, µ2, etc., are
therefore independently variable, and it appears from equation (508) that σ is
a function of these quantities. If the form of this function is known, we may
derive from it by differentiation n` 1 equations ( n denoting the total number
of component substances) giving the values of ηS,Γ1,Γ2, etc. in terms of the
variables just mentioned. This will give us, with (507), n ` 3 independent
equations between the 2n ` 4 quantities which occur in that equation. These
are all that exist, since n ` 1 of these quantities are independently variable.
Or, we may consider that we have n ` 3 independent equations between the
2n`5 quantities occurring in equation (502), of which n`2 are independently
variable.

An equation, therefore, between

σ, t, µ1, µ2, etc., (509)

may be called a fundamental equation for the surface of discontinuity. An
equation between

εS, ηS, s, mS
1, m

S
2, etc. (510)

183



or between
εS, ηS, Γ1, Γ2, etc. (511)

may also be called a fundamental equation in the same sense. For it is evident
from (501) that an equation may be regarded as subsisting between the vari-
ables (510), and if this equation be known, since n ` 2 of the variables may
be regarded as independent (viz., n ` 1 for the n ` 1 variations in the nature
of the surface of discontinuity, and one for the area of the surface considered),
we may obtain by differentiation and comparison with (501), n` 2 additional
equations between the 2n ` 5 quantities occurring in (502). Equation (506)
shows that equivalent relations can be deduced from an equation between the
variables (511). It is moreover quite evident that an equation between the vari-
ables (510) must be reducible to the form of an equation between the ratios of
these variables, and therefore to an equation between the variables (511).

The same designation may be applied to any equation from which, by differ-
entiation and the aid only of general principles and relations, n`3 independent
relations between the same 2n ` 5 quantities may be obtained.

If we set
ψS “ εS ´ tηS, (512)

we obtain by differentiation and comparison with (501)

dψS “ ´ηSdt ` σds ` µ1dm
S
1 ` µ2dm

S
2 ` etc. (513)

An equation, therefore, between ψS, t, s,mS
1,m

S
2, etc., is a fundamental equa-

tion, and is to be regarded as entirely equivalent to either of the other funda-
mental equations which have been mentioned.

The reader will not fail to notice the analogy between these fundamen-
tal equations, which relate to surfaces of discontinuity, and those relating to
homogeneous masses, which have been described on pages 30-35.

On the Experimental Determination of Fundamental Equa-
tions for Surfaces of Discontinuity between Fluid Masses.

When all the substances which are found at a surface of discontinuity are com-
ponents of one or the other of the homogeneous masses, the potentials µ1, µ2,
etc., as well as the temperature, may be determined from these homogeneous
masses.∗ The tension σ may be determined by means of the relation (500).
But our measurements are practically confined to cases in which the differ-
ence of the pressures in the homogeneous masses is small; for with increasing
differences of pressure the radii of curvature soon become too small for mea-
surement. Therefore, although the equation p1 “ p2 (which is equivalent to
an equation between t, µ1, µ2, etc., since p1 and p2 are both functions of these

∗ It is here supposed that the thermodynamic properties of the homogeneous masses have already been
investigated, and that the fundamental equations of these masses may be regarded as known.

184



variables) may not be exactly satisfied in cases in which it is convenient to
measure the tension, yet this equation is so nearly satisfied in all the measure-
ments of tension which we can make, that we must regard such measurements
as simply establishing the values of σ for values of t, µ1, µ2, etc., which satisfy
the equation p1 “ p2, but not as sufficient to establish the rate of change in
the value of σ for variations of t, µ1, µ2, etc., which are inconsistent with the
equation p1 “ p2.

To show this more distinctly, let t, µ2, µ3, etc., remain constant, then by
(508) and (98)

dσ “ ´Γ1dµ1,

dp1 “ γ1
1dµ1,

dp2 “ γ2
1dµ1,

γ1
1 and γ2

1 denoting the densities m
1
1

v1
and m2

1

v2
. Hence,

dp1 ´ dp2 “ pγ1
1 ´ γ2

1q dµ1,

and
Γ1d pp1 ´ p2q “ pγ2

1 ´ γ1
1q dσ.

But by (500)
pc1 ` c2q dσ ` σd pc1 ` c2q “ d pp1 ´ p2q .

Therefore,
Γ1 pc1 ` c2q dσ ` Γ1σd pc1 ` c2q “ pγ2

1 ´ γ1
1q dσ,

or
tγ2

1 ´ γ1
1 ´ Γ1 pc1 ` c2qu dσ “ Γ1σd pc1 ` c2q .

Now Γ1 pc1 ` c2q will generally be very small compared with γ2
1 ´γ1

1. Neglecting
the former term, we have

dσ

σ
“

Γ1

γ2
1 ´ γ1

1

d pc1 ` c2q .

To integrate this equation, we may regard Γ1, γ
1
1, γ

2
1 as constant. This will give,

as an approximate value,

log
σ

σ1
“

Γ1

γ2
1 ´ γ1

1

pc1 ` c2q .

σ1 denoting the value of σ when the surface is plane. From this it appears that
when the radii of curvature have any sensible magnitude, the value of σ will
be sensibly the same as when the surface is plane and the temperature and
all the potentials except one have the same values, unless the component for
which the potential has not the same value has very nearly the same density
in the two homogeneous masses, in which case, the condition under which the
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variations take place is nearly equivalent to the condition that the pressures
shall remain equal.

Accordingly, we cannot in general expect to determine the superficial den-
sity Γ1 from its value ´

ˆ

dσ

dµ1

˙

t,µ

∗ by measurements of superficial tensions.

The case will be the same with Γ2,Γ3, etc., and also with ηS, the superficial
density of entropy.

The quantities εS, ηS,Γ1,Γ2, etc., are evidently too small in general to admit
of direct measurement. When one of the components, however, is found only
at the surface of discontinuity, it may be more easy to measure its superficial
density than its potential. But except in this case, which is of secondary
interest, it will generally be easy to determine σ in terms of t, µ1, µ2, etc., with
considerable accuracy for plane surfaces, and extremely difficult or impossible
to determine the fundamental equation more completely.

Fundamental Equations for Plane Surfaces of Disconti-
nuity between Fluid Masses.

An equation giving σ in terms of t, µ1, µ2, etc., which will hold true only so long
as the surface of discontinuity is plane, may be called a fundamental equation
for a plane surface of discontinuity. It will be interesting to see precisely what
results can be obtained from such an equation, especially with respect to the
energy and entropy and the quantities of the component substances in the
vicinity of the surface of discontinuity. These results can be exhibited in a
more simple form, if we deviate to a certain extent from the method which we
have been following. The particular position adopted for the dividing surface
(which determines the superficial densities) was chosen in order to make the
term 1

2
pC1 ` C2q δ pc1 ` c2q in (494) vanish. But when the curvature of the

surface is not supposed to vary, such a position of the dividing surface is not
necessary for the simplification of the formula. It is evident that equation (501)
will hold true for plane surfaces (supposed to remain such) without reference
to the position of the dividing surface, except that it shall be parallel to the
surface of discontinuity. We are therefore at liberty to choose such a position
for the dividing surface as may for any purpose be convenient.

None of the equations (502)-(513), which are either derived from (501), or
serve to define new symbols, will be affected by such a change in the position of
the dividing surface. But the expressions εS, ηS,mS

1,m
S
2, etc., as also εS, ηS,Γ1,

Γ2, etc., and ψS, will of course have different values when the position of that
surface is changed. The quantity σ, however, which we may regard as defined
by equations (501), or, if we choose, by (502) or (507), will not be affected

∗ The suffixed µ is used to denote that all the potentials except that occurring in the denominator of the
differential coefficient are to be regarded as constant.
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in value by such a change. For if the dividing surface be moved a distance λ
measured normally and toward the side to which v2 relates, the quantities

εS, ηS, Γ1, Γ2, etc.

will evidently receive the respective increments

λ pε2
V ´ ε1

Vq , λ pη2
V ´ η1

Vq , λ pγ2
1 ´ γ1

1q , λ pγ2
2 ´ γ1

1q , etc.,

ε1
V, ε

2
V, η

1
V, η

2
V denoting the densities of energy and entropy in the two homoge-

neous masses. Hence, by equation (507), σ will receive the increment

λ pε2
V ´ ε1

Vq ´ tλ pη2
V ´ η1

Vq ´ µ1λ pγ2
1 ´ γ1

1q ´ µ2λ pγ2
2 ´ γ1

2q ´ etc.

But by (93)
´ p2 “ ε2

V ´ tη2
V ´ µ1γ

2
1 ´ µ2γ

2
2 ´ etc. ,

´ p1 “ ε1
V ´ tη1

V ´ µ1γ
1
1 ´ µ2γ

1
2 ´ etc.

Therefore, since p1 “ p2, the increment in the value of σ is zero. The value of
σ is therefore independent of the position of the dividing surface, when this
surface is plane. But when we call this quantity the superficial tension, we
must remember that it will not have its characteristic properties as a tension
with reference to any arbitrary surface. Considered as a tension, its position
is in the surface which we have called the surface of tension, and, strictly
speaking, nowhere else. The positions of the dividing surface, however, which
we shall consider, will not vary from the surface of tension sufficiently to make
this distinction of any practical importance.

It is generally possible to place the dividing surface so that the total quantity
of any desired component in the vicinity of the surface of discontinuity shall
be the same as if the density of that component were uniform on each side
quite up to the dividing surface. In other words, we may place the dividing
surface so as to make any one of the quantities Γ1,Γ2, etc., vanish. The only
exception is with regard to a component which has the same density in the two
homogeneous masses. With regard to a component which has very nearly the
same density in the two masses such a location of the dividing surface might
be objectionable, as the dividing surface might fail to coincide sensibly with
the physical surface of discontinuity. Let us suppose that γ1

1 is not equal (nor
very nearly equal) to γ2

1 , and that the dividing surface is so placed as to make
Γ1 “ 0. Then equation (508) reduces to

dσ “ ´ηSp1qdt ´ Γ2p1qdµ2 ´ Γ3p1qdµ3 ´ etc. , (514)

where the symbols ηSp1q,Γ2p1q, etc., are used for greater distinctness to denote
the values of ηS,Γ2, etc. as determined by a dividing surface placed so that
Γ1 “ 0. Now we may consider all the differentials in the second member of
this equation as independent, without violating the condition that the surface
shall remain plane, i.e., that dp1 “ dp2. This appears at once from the values

187



of dp1 and dp2 given by equation (98). Moreover, as has already been observed,
when the fundamental equations of the two homogeneous masses are known,
the equation p1 “ p2 affords a relation between the quantities t, µ1, µ2, etc.
Hence, when the value of σ is also known for plane surfaces in terms of t, µ1,
µ2, etc., we can eliminate µ1 from this expression by means of the relation
derived from the equality of pressures, and obtain the value of σ for plane
surfaces in terms of t, µ2, µ3, etc. From this, by differentiation, we may obtain
directly the values of ηSp1q,Γ2p1q,Γ3p1q, etc., in terms of t, µ2, µ3, etc. This would
be a convenient form of the fundamental equation. But, if the elimination of
p1, p2, and µ1 from the finite equations presents algebraic difficulties, we can
in all cases easily eliminate dp1, dp2, dµ1 from the corresponding differential
equations and thus obtain a differential equation from which the values of
ηSp1q,Γ2p1q,Γ3p1q, etc., in terms of t, µ2, µ3, etc., may be at once obtained by
comparison with (514).∗

The same physical relations may of course be deduced without giving up
the use of the surface of tension as a dividing surface, but the formula which
express them will be less simple. If we make t, µ3, µ4, etc., constant, we have

∗ If liquid mercury meets the mixed vapors of water and mercury in a plane surface, and we use µ1 and
µ2 to denote the potentials of mercury and water respectively, and place the dividing surface so that Γ1 “ 0,
i.e, so that the total quantity of mercury is the same as if the liquid mercury reached this surface on one
side and the mercury vapor on the other without change of density on either side, then Γ2p1q will represent
the amount of water in the vicinity of this surface, per unit of surface, above that which there would be, if
the water-vapor just reached the surface without change of density, and this quantity (which we may call
the quantity of water condensed upon the surface of the mercury) will be determined by the equation

Γ2p1q “ ´
dσ

dµ2

(In this differential coefficient as well as the following, the temperature is supposed to remain constant and
the surface of discontinuity plane. Practically, the latter condition may be regarded as fulfilled in the case
of any ordinary curvatures.)

If the pressure in the mixed vapors conforms to the law of Dalton (see pp. 103, 106), we shall have for
constant temperature

dp2 “ γ2 dµ2 ,

where p2 denotes the part of the pressure in the vapor due to the water-vapor, and γ2 the density of the
water-vapor. Hence we obtain

Γ2p1q “ ´γ2
dσ

dp2

For temperatures below 100˝ centigrade, this will certainly be accurate, since the pressure due to the vapor
of mercury may be neglected.

The value of σ for p2 “ 0 and the temperature of 20˝ centigrade must be nearly the same as the superficial
tension of mercury in contact with air, or 55.03 grammes per linear meter according to Quincke (Pogg. Ann.,
Bd. 139, p. 27 ). The value of σ at the same temperature, when the condensed water begins to have the
properties of water in mass, will be equal to the sum of the superficial tensions of mercury in contact with
water and of water in contact with its own vapor. This will be, according to the same authority, 42.58`3.25,
or 50.83 grammes per meter, if we neglect the difference of the tensions of water with its vapor and water
with air. As p2, therefore, increases from zero to 236400 grammes per square meter (when water begins
to be condensed in mass), σ diminishes from about 55.03 to about 50.83 grammes per linear meter. If the
general course of the values of σ for intermediate values of p2 were determined by experiment, we could
easily form an approximate estimate of the values of the superficial density Γ2p1q for different pressures leas
than that of saturated vapor. It will be observed that the determination of the superficial density does not
by any means depend upon inappreciable differences of superficial tension. The greatest difficulty in the
determination would doubtless be that of distinguishing between the diminution of superficial tension due
to the water and that due to other substances which might accidentally be present. Such determinations
are of considerable practical importance on account of the use of mercury in measurements of the specific
gravity of vapors.
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by (98) and (508)
dp1 “ γ1

1dµ1 ` γ1
2dµ2,

dp2 “ γ2
1dµ1 ` γ2

2dµ2,

dσ “ ´Γ1dµ1 ´ Γ2dµ2,

where we may suppose Γ1 and Γ2 to be determined with reference to the surface
of tension. Then, if dp1 “ dp2,

pγ1
1 ´ γ2

1qdµ1 ` pγ1
2 ´ γ2

2q dµ2 “ 0,

and
dσ “ Γ1

γ1
2 ´ γ2

2

γ1
1 ´ γ2

1

dµ2 ´ Γ2dµ2.

That is,
ˆ

dσ

dµ2

˙

p1´p2,t,µ3,µ4, etc.
“ ´Γ2 ` Γ1

γ1
2 ´ γ2

2

γ1
1 ´ γ2

1

. (515)

The reader will observe that Γ1

γ1
1 ´ γ2

1

represents the distance between the sur-
face of tension and that dividing surface which would make Γ1 “ 0; the second
number of the last equation is therefore equivalent to ´Γ3p1q.

If any component substance has the same density in the two homogeneous
masses separated by a plane surface of discontinuity, the value of the superfi-
cial density for that component is independent of the position of the dividing
surface. In this case alone we may derive the value of the superficial density
of a component with reference to the surface of tension from the fundamental
equation for plane surfaces alone. Thus in the last equation, when γ1

2 “ γ2
2 , the

second member will reduce to ´Γ2. It will be observed that to make p1 ´ p2,
t, µ3, µ4, etc. constant is in this case equivalent to making t, µ1, µ3, µ4, etc.
constant.

Substantially the same is true of the superficial density of entropy or of
energy, when either of these has the same density in the two homogeneous
masses.∗

∗ With respect to questions which concern only the form of surfaces of discontinuity, such precision as we
have employed in regard to the position of the dividing surface is evidently quite unnecessary. This precision
has not been used for the sake of the mechanical part of the problem, which does not require the surface
to be defined with greater nicety than we can employ in our observations, but in order to give determinate
values to the superficial densities of energy, entropy, and the component substances, which quantities, as has
been seen, play an important part in the relations between the tension of a surface of discontinuity, and the
composition of the masses which it separates.

The product σs of the superficial tension and the area of the surface, may be regarded as the available
energy due to the surface in a system in which the temperature and the potentials µ1, µ2, etc. — or the
differences of these potentials and the gravitational potential (see page 96) when the system is subject to
gravity —are maintained sensibly constant. The value of σ, as well as that of s, is sensibly independent of
the precise position which we may assign to the dividing surface (so long as this is sensibly coincident with
the surface of discontinuity), but εS, the superficial density of energy, as the term is used in this paper, like
the superficial densities of entropy and of the component substances, requires a more precise localization of
the dividing surface.
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Concerning the Stability of Surfaces of Discontinuity be-
tween Fluid Masses.

We shall first consider the stability of a film separating homogeneous masses
with respect to changes in its nature, while its position and the nature of the
homogeneous masses are not altered. For this purpose it will be convenient to
suppose that the homogeneous masses are very large, and thoroughly stable
with respect to the possible formation of any different homogeneous masses
out of their components, and that the surface of discontinuity is plane and
uniform.

Let us distinguish the quantities which relate to the actual components
of one or both of the homogeneous masses by the suffixes a, b, etc., and those
which relate to components which are found only at the surface of discontinuity
by the suffixes g, h, etc, and consider the variation of the energy of the whole
system in consequence of a given change in the nature of a small part of the
surface of discontinuity, while the entropy of the whole system and the total
quantities of the several components remain constant, as well as the volume
of each of the homogeneous masses, as determined by the surface of tension.
This small part of the surface of discontinuity in its changed state is supposed
to be still uniform in nature, and such as may subsist in equilibrium between
the given homogeneous masses, which will evidently not be sensibly altered in
nature or thermodynamic state. The remainder of the surface of discontinuity
is also supposed to remain uniform, and on account of its infinitely greater
size to be infinitely less altered in its nature than the first part. Let ∆εS

denote the increment of the superficial energy of this first part, ∆ηS,∆mS
a,

∆mS
b , etc., ∆mS

g ,∆m
S
h, etc., the increments of its superficial entropy and of

the quantities of the components which we regard as belonging to the surface.
The increments of entropy and of the various components which the rest of
the system receive will be expressed by

´∆ηS, ´∆mS
a, ´∆mS

b , etc., ´ ∆mS
g , ´∆mS

h, etc.,

and the consequent increment of energy will be by (12) and (501)

´t∆ηS ´ µa∆m
S
a ´ µb∆m

S
b ´ etc. ´ µg∆m

S
g ´ µh∆m

S
h ´ etc.

Hence the total increment of energy in the whole system will be

∆εS ´ t∆ηS ´ µa∆m
S
a ´ µb∆m

S
b ´ etc.

(

´µg∆m
S
g ´ µh∆m

S
h ´ etc.

( (516)

If the value of this expression is necessarily positive, for finite changes as well
as infinitesimal in the nature of the part of the film to which ∆εS, etc. relate,∗

∗ In the case of infinitesimal changes in the nature of the film, the sign ∆ must be interpreted, as elsewhere
in this paper, without neglect of infinitesimals of the higher orders. Otherwise, by equation (501), the above
expression would hare the value zero.
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the increment of energy of the whole system will be positive for any possible
changes in the nature of the film, and the film will be stable, at least with
respect to changes in its nature, as distinguished from its position. For, if we
write

DεS, DηS, DmS
a, Dm

S
b , etc., DmS

g , Dm
S
h, etc.,

for the energy, etc. of any element of the surface of discontinuity, we have from
the supposition just made

∆DεS ´ t∆DηS ´ µa∆Dm
S
a ´ µb∆Dm

S
b ´ etc.

´ µg∆Dm
S
g ´ µh∆Dm

S
h ´ etc. ą 0;

(517)

and integrating for the whole surface, since

∆

ż

DmS
g “ 0, ∆

ż

DmS
h “ 0, etc.

we have

∆

ż

DεS ´ t∆

ż

DηS ´ µa∆

ż

DmS
a ´ µb∆

ż

DmS
b ´ etc. ą 0.

Now ∆
ş

DηS is the increment of the entropy of the whole surface, and ´∆
ş

DηS

is therefore the increment of the entropy of the two homogeneous masses. In
like manner, ´∆

ş

DmS
a, ´∆

ş

DmS
b , etc., are the increments of the quantities

of the components in these masses. The expression

´t∆

ż

DηS ´ µa∆

ż

DmS
a ´ µb∆

ż

DmS
b ´ etc.

denotes therefore, according to equation (12), the increment of energy of the
two homogeneous masses, and since ∆

ş

DεS denotes the increment of energy
of the surface, the above condition expresses that the increment of the total
energy of the system is positive. That we have only considered the possible
formation of such films as are capable of existing in equilibrium between the
given homogeneous masses can not invalidate the conclusion in regard to the
stability of the film, for in considering whether any state of the system will
have less energy than the given state, we need only consider the state of least
energy, which is necessarily one of equilibrium.

If the expression (516) is capable of a negative value for an infinitesimal
change in the nature of the part of the film to which the symbols relate, the
film is obviously unstable.

If the expression is capable of a negative value, but only for finite and
not for infinitesimal changes in the nature of this part of the film, the film is
practically unstable,∗ i.e., if such a change were made in a small part of the film,
the disturbance would tend to increase. But it might be necessary that the

∗ With respect to the sense in which this term is used, compare page 25.
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initial disturbance should also have a finite magnitude in respect to the extent
of surface in which it occurs; for we cannot suppose that the thermodynamic
relations of an infinitesimal part of a surface of discontinuity are independent
of the adjacent parts. On the other hand, the changes which we have been
considering are such that every part of the film remains in equilibrium with
the homogeneous masses on each side; and if the energy of the system can
be diminished by a finite change satisfying this condition, it may perhaps be
capable of diminution by an infinitesimal change which does not satisfy the
same condition. We must therefore leave it undetermined whether the film,
which in this case is practicality unstable, is or is not unstable in the strict
mathematical sense of the term.

Let us consider more particularly the condition of practical stability, in
which we need not distinguish between finite and infinitesimal changes. To
determine whether the expression (516) is capable of a negative value, we need
only consider the least value of which it is capable. Let us write it in the fuller
form
εS2 ´ εS1 ´ t

`

ηS2 ´ ηS1
˘

´ µa
`

mS2
a ´ mS1

a

˘

´ µb
`

mS2
b ´ mS1

b

˘

´ etc.,
´ µ1

g

`

mS2
g ´ mS1

g

˘

´ µ1
h

`

mS2
h ´ mS1

h

˘

´ etc.
(519)

where the single and double accents distinguish the quantities which relate to
the first and second states of the film, the letters without accents denoting
those quantities which have the same value in both states. The differential of
this expression when the quantities distinguished by double accents are alone
considered variable, and the area of the surface is constant, will reduce by
(501) to the form

pµ2
g ´ µ1

gqdm
S2
g ` pµ2

h ´ µ1
hqdmS2

h ` etc.

To make this incapable of a negative value, we must have

µ2
g “ µ1

g, unless mS2
g “ 0,

µ2
h “ µ1

h, unless mS2
h “ 0.

In virtue of these relations and by equation (502), the expression (519), i.e.,
(516), will reduce to

σ2s ´ σ1s,

which will be positive or negative according as

σ2 ´ σ1 (520)

is positive or negative.
That is, if the tension of the film is less than that of any other film of

the same components which can exist between the same homogeneous masses
(which has therefore the same values of t, µa, µb, etc.), and which moreover
has the same values of the potentials µg, µh, etc., so far as it contains the
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substances to which these relate, then the first film will be stable. But the film
will be practically unstable, if any other such film has a less tension. (Compare
the expression (141), by which the practical stability of homogeneous masses
is tested.)

It is, however, evidently necessary for the stability of the surface of discon-
tinuity with respect to deformation, that the value of the superficial tension
should be positive. Moreover, since we have by (502) for the surface of discon-
tinuity

εS ´ tηS ´ µam
S
a ´ µbm

S
b ´ etc. ´ µgm

S
g ´ µhm

S
h ´ etc. “ σs

and by (93) for the two homogeneous masses

ε1 ´ tη1 ` pv1 ´ µam
1
a ´ µbm

1
b ´ etc. “ 0,

ε2 ´ tη2 ` pv2 ´ µam
2
a ´ µbm

2
b ´ etc. “ 0,

if we denote by

ε, η, v, ma, mb, etc., mg, mh, etc.,

the total energy, etc. of a composite mass consisting of two such homogeneous
masses divided by such a surface of discontinuity, we shall have by addition of
these equations

ε ´ tη ` pv ´ µama ´ µbmb ´ etc. ´ µgmg ´ µhmh ´ etc. “ σs.

Now if the value of σ is negative, the value of the first member of this equation
will decrease as o increases, and may therefore be decreased by making the
mass to consist of thin alternate straits of the two kinds of homogeneous masses
which we are considering. There will be no limit to the decrease which is thus
possible with a given value of v, so long as the equation is applicable, i.e., so
long as the strata have the properties of similar bodies in mass. But it may
easily be shown (as in a similar case on pages 23,23 ) that when the values of

t, p, µa, µb, etc., µg, µh, etc.,

are regarded as fixed, being determined by the surface of discontinuity in
question, and the values of

ε, η, ma, mb, etc., mg, mh, etc.,

are variable and may be determined by any body having the given volume v,
the first member of this equation cannot have an infinite negative value, and
must therefore have a least possible value, which will be negative, if any value
is negative, that is, if σ is negative.

The body determining ε, η, etc. which will give this least value to this
expression will evidently be sensibly homogeneous. With respect to the for-
mation of such a body, the system consisting of the two homogeneous masses
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and the surface of discontinuity with the negative tension is by (53) (see also
page 25 ) at least practically unstable, if the surface of discontinuity is very
large, so that it can afford the requisite material without sensible alteration of
the values of the potentials. (This limitation disappears, if all the component
substances are found in the homogeneous masses.) Therefore, in a system
satisfying the conditions of practical stability with respect to the possible for-
mation of all kinds of homogeneous masses, negative tensions of the surfaces
of discontinuity are necessarily excluded.

Let us now consider the condition which we obtain by applying (516) to
infinitesimal changes. The expression may be expanded as before to the form
(519), and then reduced by equation (502) to the form

s pσ2 ´ σ1q ` mS2
g

`

µ2
g ´ µ1

g

˘

` mS2
h pµ2

h ´ µ1
hq ` etc.

That the value of this expression shall be positive when the quantities are
determined by two films which differ infinitely little is a necessary condition
of the stability of the film to which the single accents relate. But if one film
is stable, the other will in general be so too, and the distinction between the
films with respect to stability is of importance only at the limits of stability. If
all films for all values of µg, µh, etc. are stable, or all within certain limits, it is
evident that the value of the expression must be positive when the quantities
are determined by any two infinitesimally different films within the same limits.
For such collective determinations of stability the condition may be written

´s∆σ ´ mS
g∆µg ´ mS

h∆µh ´ etc. ą 0,

or
∆σ ă ´Γg∆µg ´ Γh∆µh ´ etc. (521)

On comparison of this formula with (508), it appears that within the limits of
stability the second and higher differential coefficients of the tension considered
as a function of the potentials for the substances which are found only at
the surface of discontinuity (the potentials for the substances found in the
homogeneous masses and the temperature being regarded as constant) satisfy
the conditions which would make the tension a maximum if the necessary
conditions relative to the first differential coefficients were fulfilled.

In the foregoing discussion of stability, the surface of discontinuity is sup-
posed plane. In this case, as the tension is supposed positive, there can be no
tendency to a change of form of the surface. We now pass to the consideration
of changes consisting in or connected with motion and change of form of the
surface of tension, which we shall at first suppose to be and to remain spherical
and uniform throughout.

In order that the equilibrium of a spherical mass entirely surrounded by
an indefinitely large mass of different nature shall be neutral with respect to
changes in the value of r, the radius of the sphere, it is evidently necessary
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that equation (500), which in this case may be written

2σ “ r pp1 ´ p2q , (522)

as well as the other conditions of equilibrium, shall continue to hold true for
varying values of r. Hence, for a state of equilibrium which is on the limit
between stability and instability, it is necessary that the equation

2dσ “ pp1 ´ p2q dr ` rdp1

shall be satisfied, when the relations between dσ, dp1, and dr are determined
from the fundamental equations on the supposition that the conditions of
equilibrium relating to temperature and the potentials remain satisfied. (The
differential coefficients in the equations which follow are to be determined on
this supposition.) Moreover, if

r
dp1

dr
ă 2

dσ

dr
´ p1 ` p2, (523)

i.e., if the pressure of the interior mass increases less rapidly (or decreases
more rapidly) with increasing radius than is necessary to preserve neutral
equilibrium, the equilibrium is stable. But if

r
dp1

dr
ą 2

dσ

dr
´ p1 ` p2, (524)

the equilibrium is unstable. In the remaining case, when

r
dp1

dr
“ 2

dσ

dr
´ p1 ` p2, (525)

farther conditions are of course necessary to determine absolutely whether the
equilibrium is stable or unstable, but in general the equilibrium will be stable
in respect to change in one direction and unstable in respect to change in
the opposite direction, and is therefore to be considered unstable. In general,
therefore, we may call (523) the condition of stability.

When the interior mass and the surface of discontinuity are formed entirely
of substances which are components of the external mass, p1 and σ cannot
vary, and condition (524) being satisfied the equilibrium is unstable.

But if either the interior homogeneous mass or the surface of discontinuity
contains substances which are not components of the enveloping mass, the
equilibrium may be stable. If there is but one such substance, and we denote
its densities and potential by γ1

1, Γ1, and µ1, the condition of stability (523)
will reduce to the form

ˆ

r
dp1

dµ1

´ 2
dσ

dµ1

˙

dµ1

dr
ă p2 ´ p1,
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or, by (98) and (508),

prγ1
1 ` 2Γ1q

dµ1

dr
ă p2 ´ p1. (526)

In these equations and in all which follow in the discussion of this case, the
temperature and the potentials µ2, µ3, etc. are to be regarded as constant.
But

γ1
1v

1 ` Γ1s,

which represents the total quantity of the component specified by the suffix,
must be constant. It is evidently equal to

4

3
πr3γ1

1 ` 4πr2Γ1.

Dividing by 4π and differentiating, we obtain
`

r2γ1
1 ` 2rΓ1

˘

dr `
1

3
r3dγ1

1 ` r2dΓ1 “ 0,

or, since γ1
1 and Γ1 are functions of µ1,

prγ1
1 ` 2Γ1q dr `

ˆ

r2

3

dγ1
1

dµ1

` r
dΓ1

dµ1

˙

dµ1 “ 0. (527)

By means of this equation, the condition of stability is brought to the form

prγ1
1 ` 2Γ1q

2

r2

3

dγ1
1

dµ1

` r
dΓ1

dµ1

ą p1 ´ p2. (528)

If we eliminate r by equation (522), we have
ˆ

γ1
1

p1 ´ p2
`

Γ1

σ

˙2

1

3 pp1 ´ p2q

dγ1
1

dµ1

`
1

2σ

dΓ1

dµ1

ą 1. (529)

If p1 and σ are known in terms of t, µ1, µ2, etc., we may express the first member
of this condition in terms of the same variables and p2. This will enable us to
determine, for any given state of the external mass, the values of µ1 which will
make the equilibrium stable or unstable.

If the component to which γ1
1 and Γ1 relate is found only at the surface of

discontinuity, the condition of stability reduces to

Γ2
1

σ

dµ1

dΓ1

ą
1

2
(530)
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Since
Γ1 “ ´

dσ

dµ1

we may also write
Γ1

σ

dσ

dΓ1

ă ´
1

2
, or d log σ

d log Γ1

ă ´
1

2
. (531)

Again, if Γ1 “ 0 and dΓ1

dµ1

“ 0, the condition of stability reduces to

3γ12
1

p1 ´ p2

dµ1

dγ1
ą 1 (532)

Since
γ1
1 “

dp1

dµ1

we may also write

γ1
1

p1 ´ p2

dp1

dγ1
1

ą
1

3
, or d log pp1 ´ p2q

d log γ1
1

ą
1

3
. (533)

When r is large, this will be a close approximation for any values of Γ1, unless
γ1
1 is very small. The two special conditions (531) and (533) might be derived

from very elementary considerations.
Similar conditions of stability may be found when there are more substances

than one in the inner mass or the surface of discontinuity, which are not compo-
nents of the enveloping mass. In this case, we have instead of (526) a condition
of the form

prγ1
1 ` 2Γ1q

dµ1

dr
` prγ1

2 ` 2Γ2q
dµ2

dr
` etc. ă p2 ´ p1. (534)

from which dµ1

dr
,
dµ2

dr
, etc. may be eliminated by means of equations derived

from the conditions that

γ1
1v

1 ` Γ1s, γ1
2v

1 ` Γ2s, etc.

must be constant.
Nearly the same method may be applied to the following problem. Two

different homogeneous fluids are separated by a diaphragm having a circular
orifice, their volumes being invariable except by the notion of the surface of
discontinuity, which adheres to the edge of the orifice; —to determine the
stability or instability of this surface when in equilibrium.

The condition of stability derived from (522) may in this case be written

r
d pp1 ´ p2q

dv1
ă 2

dσ

dv1
´ pp1 ´ p2q

dr

dv1
, (535)
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where the quantities relating to the concave side of the surface of tension are
distinguished by a single accent.

If both the masses are infinitely large, or if one which contains all the
components of the system is infinitely large, p1 ´ p2 and σ will be constant,
and the condition reduces to

dr

dv1
ă 0.

The equilibrium will therefore be stable or unstable according as the surface
of tension is less or greater than a hemisphere.

To return to the general problem: —if we denote by x the part of the axis of
the circular orifice intercepted between the center of the orifice and the surface
of tension, by R the radius of the orifice, and by V 1 the value of v1 when the
surface of tension is plane, we shall have the geometrical relations

R2 “ 2rx ´ x2,

and
v1 “ V 1 `

2

3
πr2x ´

1

3
πR2pr ´ xq

“ V 1 ` πrx2 ´
1

3
πx3.

By differentiation we obtain

pr ´ xqdx ` xdr “ 0,

and
dv1 “ πx2dr `

`

2πrx ´ πx2
˘

dx;

whence
pr ´ xqdv1 “ ´πrx2dr. (536)

By means of this relation, the condition of stability may be reduced to the
form

dp1

dv1
´

dp2

dv1
´

2

r

dσ

dv1
ă pp1 ´ p2q

r ´ x

πr2x2
. (537)

Let us now suppose that the temperature and all the potentials except
one, µ1, are to be regarded as constant. This will be the case when one of
the homogeneous masses is very large and contains all the components of the
system except one, or when both these masses are very large and there is a
single substance at the surface of discontinuity which is not a component of
either; also when the whole system contains but a single component, and is
exposed to a constant temperature at its surface. Condition ( 537 ) will reduce
by (98) and (508) to the form

ˆ

γ1
1 ´ γ2

1 `
2Γ1

r

˙

dµ1

dv1
ă pp1 ´ p2q

r ´ x

πr2x2
. (538)
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But
γ1
1v

1 ` γ2
1v

2 ` Γ1s

(the total quantity of the component specified by the suffix) must be constant;
therefore, since

dv2 “ ´dv1, and ds “
2

r
dv1,

ˆ

v1 dγ
1
1

dµ1

` v2dγ
2
1

dµ1

` s
dΓ1

dµ1

˙

dµ1 `

ˆ

γ1
1 ´ γ2

1 `
2Γ1

r

˙

dv1 “ 0. (539)

By this equation, the condition of stability is brought to the form
ˆ

γ1
1 ´ γ2

1 `
2Γ1

r

˙2

v1
dγ1

1

dµ1

` v2
dγ2

1

dµ1

` s
dΓ1

dµ1

ą pp1 ´ p2q
x ´ r

πx2r2
. (540)

When the substance specified by the suffix is a component of either of the
homogeneous masses, the terms 2Γ1

r
and s

dΓ1

dµ1

may generally be neglected.

When it is not a component of either, the terms γ1
1, γ2

1 , v
1
dγ1

1

dµ1

, v2
dγ2

1

dµ1

may of
course be cancelled, but we must not apply the formula to cases in which the
substance spreads over the diaphragm separating the homogeneous masses.

In the cases just discussed, the problem of the stability of certain surfaces
of tension has been solved by considering the case of neutral equilibrium, — a
condition of neutral equilibrium affording the equation of the limit of stability.
This method probably leads as directly as any to the result, when that consists
in the determination of the value of a certain quantity at the limit of stability, or
of the relation which exists at that limit between certain quantities specifying
the state of the system. But problems of a more general character may require
a more general treatment.

Let it be required to ascertain the stability or instability of a fluid system in
a given state of equilibrium with respect to motion of the surfaces of tension
and accompanying changes. It is supposed that the conditions of internal
stability for the separate homogeneous masses are satisfied, as well as those
conditions of stability for the surfaces of discontinuity which relate to small
portions of these surfaces with the adjacent masses. (The conditions of stability
which are here supposed to be satisfied have been already discussed in part
and will be farther discussed hereafter.) The fundamental equations for all
the masses and surfaces occurring in the system are supposed to be known.
In applying the general criteria of stability which are given on page 3, we
encounter the following difficulty.

The question of the stability of the system is to be determined by the
consideration of states of the system which are slightly varied from that of
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which the stability is in question. These varied states of the system are not in
general states of equilibrium, and the relations expressed by the fundamental
equations may not hold true of them. More than this, —if we attempt to
describe a varied state of the system by varied values of the quantities which
describe the initial state, if these varied values are such as are inconsistent
with equilibrium, they may fail to determine with precision any state of the
system. Thus, when the phases of two contiguous homogeneous masses are
specified, if these phases are such as satisfy all the conditions of equilibrium,
the nature of the surface of discontinuity (if without additional components)
is entirely determined; but if the phases do not satisfy all the conditions of
equilibrium, the nature of the surface of discontinuity is not only undetermined,
but incapable of determination by specified values of such quantities as we have
employed to express the nature of surfaces of discontinuity in equilibrium. For
example, if the temperatures in contiguous homogeneous masses are different,
we cannot specify the thermal state of the surface of discontinuity by assigning
to it any particular temperature. It would be necessary to give the law by which
the temperature passes over from one value to the other. And if this were given,
we could make no use of it in the determination of other quantities, unless the
rate of change of the temperature were so gradual that at every point we could
regard the thermodynamic state as unaffected by the change of temperature
in its vicinity. It is true that we are also ignorant in respect to surfaces of
discontinuity in equilibrium of the law of change of those quantities which are
different in the two phases in contact, such as the densities of the components,
but this, although unknown to us, is entirely determined by the mature of the
phases in contact, so that no vagueness is occasioned in the definition of any
of the quantities which we have occasion to use with reference to such surfaces
of discontinuity.

It may be observed that we have established certain differential equations,
especially (497), in which only the initial state is necessarily one of equilibrium.
Such equations may be regarded as establishing certain properties of states
bordering upon those of equilibrium. But these are properties which hold true
only when we disregard quantities proportional to the square of those which
express the degree of variation of the system from equilibrium. Such equations
are therefore sufficient for the determination of the conditions of equilibrium,
but not sufficient for the determination of the conditions of stability.

We may, however, use the following method to decide the question of sta-
bility in such a case as has been described.

Beside the real system of which the stability is in question, it will be con-
venient to conceive of another system, to which we shall attribute in its initial
state the same homogeneous masses and surfaces of discontinuity which be-
long to the real system. We shall also suppose that the homogeneous masses
and surfaces of discontinuity of this system, which we may call the imaginary
system, have the same fundamental equations as those of the real system. But
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the imaginary system is to differ from the real in that the variations of its
state are limited to such as do not violate the conditions of equilibrium re-
lating to temperature and the potentials, and that the fundamental equations
of the surfaces of discontinuity hold true for these varied states, although the
condition of equilibrium expressed by equation (500) may not be satisfied.

Before proceeding farther, we must decide whether we are to examine the
question of stability under the condition of a constant external temperature, or
under the condition of no transmission of heat to or from external bodies, and
in general, to what external influences we are to regard the system as subject.
It will be convenient to suppose that the exterior of the system is fixed, and
that neither matter nor heat can be transmitted through it. Other cases may
easily be reduced to this, or treated in a manner entirely analogous.

Now if the real system in the given state is unstable, there must be some
slightly varied state in which the energy is less, but the entropy and the quan-
tities of the components the same as in the given state, and the exterior of
the system unvaried. But it may easily be shown that the given state of the
system may be made stable by constraining the surfaces of discontinuity to
pass through certain fixed lines situated in the unvaried surfaces. Hence, if
the surfaces of discontinuity are constrained to pass through corresponding
fixed lines in the surfaces of discontinuity belonging to the varied state just
mentioned, there must be a state of stable equilibrium for the system thus
constrained which will differ infinitely little from the given state of the system,
the stability of which is in question, and will have the same entropy, quantities
of components, and exterior, but less energy. The imaginary system will have
a similar state, since the real and imaginary systems do not differ in respect to
those states which satisfy all the conditions of equilibrium for each surface of
discontinuity. That is, the imaginary system has a state, differing infinitely lit-
tle from the given state, and with the same entropy, quantities of components,
and exterior, but with less energy.

Conversely, if the imaginary system has such a state as that just described,
the real system will also have such a state. This may be shown by fixing certain
lines in the surfaces of discontinuity of the imaginary system in its state of less
energy and then making the energy a minimum under the conditions. The state
thus determined will satisfy all the conditions of equilibrium for each surface
of discontinuity, and the real system will therefore have a corresponding state,
in which the entropy, quantities of components, and exterior will be the same
as in the given state, but the energy less.

We may therefore determine whether the given system is or is not unstable,
by applying the general criterion of instability (7) to the imaginary system.

If the system is not unstable, the equilibrium is either neutral or stable. Of
course we can determine which of these is the case by reference to the imaginary
system, since the determination depends upon states of equilibrium, in regard
to which the real and imaginary systems do not differ. We may therefore
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determine whether the equilibrium of the given system is stable, neutral, or
unstable, by applying the criteria (3)-(7) to the imaginary system.

The result which we have obtained may be expressed as follows: —In ap-
plying to a fluid system which is in equilibrium, and of which all the small
parts taken separately are stable, the criteria of stable, neutral, and unsta-
ble equilibrium, we may regard the system as under constraint to satisfy the
conditions of equilibrium relating to temperature and the potentials, and as
satisfying the relations expressed by the fundamental equations for masses and
surfaces, even when the condition of equilibrium relating to pressure [equation
(500)] is not satisfied.

It follows immediately from this principle, in connection with equations
(501) and (86), that in a stable system each surface of tension must be a
surface of minimum area for constant values of the volumes which it divides,
when the other surfaces bounding these volumes and the perimeter of the
surface of tension are regarded as fixed; that in a system in neutral equilibrium
each surface of tension will have as small an area as it can receive by any
slight variations under the same limitations; and that in seeking the remaining
conditions of stable or neutral equilibrium, when these are satisfied, it is only
necessary to consider such varied surfaces of tension as have similar properties
with reference to the varied volumes and perimeters.

We may illustrate the method which has been described by applying it to
a problem but slightly different from one already (pp. 196, 198) discussed by
a different method. It is required to determine the conditions of stability for a
system in equilibrium, consisting of two different homogeneous masses meeting
at a surface of discontinuity, the perimeter of which is invariable, as well as
the exterior of the whole system, which is also impermeable to heat.

To determine what is necessary for stability in addition to the condition of
minimum area for the surface of tension, we need only consider those varied
surfaces of tension which satisfy the same condition. We may therefore regard
the surface of tension as determined by v1, the volume of one of the homo-
geneous masses. But the state of the system would evidently be completely
determined by the position of the surface of tension and the temperature and
potentials, if the entropy and the quantities of the components were variable;
and therefore, since the entropy and the quantities of the components are con-
stant, the state of the system must be completely determined by the position
of the surface of tension. We may therefore regard all the quantities relating
to the system as functions of v1, and the condition of stability may be written

dε

dv1
dv1 `

1

2

d2ε

dv12
dv12 ` etc. ą 0,

where ε denotes the total energy of the system. Now the conditions of equi-
librium require that

dε

dv1
“ 0,

202



Hence, the general condition of stability is that

d2ε

dv12
ą 0. (541)

Now if we write ε1, ε2, εS for the energies of the two masses and of the surface,
we have by (86) and (501), since the total entropy and the total quantities of
the several components are constant,

dε “ dε1 ` dε2 ` dεS “ ´p1dv1 ´ p2dv2 ` σds,

or, since dv2 “ ´dv1,
dε

dv1
“ ´p1 ` p2 ` σ

ds

dv1
. (542)

Hence,
d2ε

dv12
“ ´

dp1

dv1
`

dp2

dv1
`

dσ

dv1

ds

dv1
` σ

d2s

dv12
(543)

and the condition of stability may be written

σ
d2s

dv12
ą

dp1

dv1
´

dp2

dv1
´

dσ

dv1

ds

dv1
. (544)

If we now simplify the problem by supposing, as in the similar case on page
198, that we may disregard the variations of the temperature and of all the
potentials except one, the condition will reduce to

σ
d2s

dv12
ą

ˆ

γ1
1 ´ γ2

1 ` Γ1
ds

dv1

˙

dµ1

dv1
(545)

The total quantity of the substance indicated by the suffix 1 is

γ1
1v

1 ` γ2
1v

2 ` Γ1s.

Making this constant, we have
ˆ

γ1
1 ´ γ2

1 ` Γ1
ds

dv1

˙

dv1 `

ˆ

v1 dγ
1
1

dµ1

` v2dγ
2
1

dµ1

` s
dΓ1

dµ1

˙

dµ1 “ 0. (546)

The condition of equilibrium is thus reduced to the form

σ
d2s

dv12
ą ´

ˆ

γ1
1 ´ γ2

1 ` Γ1
ds

dv1

˙2

v1
dγ1

1

dµ1

` v2
dγ2

1

dµ1

` s
dΓ1

dµ1

, (547)

where ds

dv1
and d2s

dv12
are to be determined from the form of the surface of tension

by purely geometrical considerations, and the other differential coefficients are
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to be determined from the fundamental equations of the homogeneous masses
and the surface of discontinuity. Condition (540) may be easily deduced from
this as a particular case.

The condition of stability with reference to motion of surfaces of disconti-
nuity admits of a very simple expression when we can treat the temperature
and potentials as constant. This will be the case when one or more of the
homogeneous masses, containing together all the component substances, may
be considered as indefinitely large, the surfaces of discontinuity being finite.
For if we write

ř

∆ε for the sum of the variations of the energies of the several
homogeneous masses, and

ř

∆εS for the sum of the variations of the ener-
gies of the several surfaces of discontinuity, the condition of stability may be
written

ÿ

∆ε `
ÿ

∆εS ą 0, (548)
the total entropy and the total quantities of the several components being
constant. The variations to be considered are infinitesimal, but the character
∆ signifies, as elsewhere in this paper, that the expression is to be interpreted
without neglect of infinitesimals of the higher orders. Since the temperature
and potentials are sensibly constant, the same will be true of the pressures and
surface-tensions, and by integration of (86) and (501) we may obtain for any
homogeneous mass

∆ε “ t∆η ´ p∆v ` µ1∆m1 ` µ2∆m2 ` etc.,

and for any surface of discontinuity

∆εS “ t∆ηS ` σ∆s ` µ1∆m
S
1 ` µ2∆m

S
2 ` etc.

[changed a superscript] These equations will hold true of finite differences,
when t, p, σ, µ1, µ2, etc. are constant, and will therefore hold true of infinites-
imal differences, under the same limitations, without neglect of the infinites-
imals of the higher orders. By substitution of these values, the condition of
stability will reduce to the form

´
ÿ

pp∆vq `
ÿ

pσ∆sq ą 0,

or
ÿ

pp∆vq ´
ÿ

pσ∆sq ă 0.
(549)

That is, the sum of the products of the volumes of the masses by their pres-
sures, diminished by the sum of the products of the areas of the surfaces of
discontinuity by their tensions, must be a maximum. This is a purely geomet-
rical condition, since the pressures and tensions are constant. This condition
is of interest, because it is always sufficient for stability with reference to mo-
tion of surfaces of discontinuity. For any system may be reduced to the kind
described by putting certain parts of the system in communication (by means
of fine tubes if necessary) with large masses of the proper temperatures and
potentials. This may be done without introducing any new movable surfaces
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of discontinuity. The condition (549) when applied to the altered system is
therefore the same as when applied to the original system. But it is sufficient
for the stability of the altered system, and therefore sufficient for its stability
if we diminish its freedom by breaking the connection between the original
system and the additional parts, and therefore sufficient for the stability of
the original system.

On the Possibility of the Formation of a Fluid of different
Phase within any Homogeneous Fluid.

The study of surfaces of discontinuity throws considerable light upon the sub-
ject of the stability of such homogeneous fluid masses as have a less pressure
than others formed of the same components (or some of them) and having the
same temperature and the same potentials for their actual components.∗

In considering this subject, we must first of all inquire how far our method
of treating surfaces of discontinuity is applicable to cases in which the radii
of curvature of the surfaces are of insensible magnitude. That it should not
be applied to such cases without limitation is evident from the consideration
that we have neglected the term 1

2
pC1 ´ C2q δ pc1 ´ c2q in equation (494) on

account of the magnitude of the radii of curvature compared with the thickness
of the non-homogeneous film. (See page 180.) When, however, only spherical
masses are considered, this term will always disappear, since C1 and C2 will
necessarily be equal.

Again, the surfaces of discontinuity have been regarded as separating homo-
geneous masses. But we may easily conceive that a globular mass (surrounded
by a large homogeneous mass of different nature) may be so small that no part
of it will be homogeneous, and that even at its center the matter cannot be
regarded as having any phase of matter in mass. This, however, will cause
no difficulty, if we regard the phase of the interior mass as determined by the
same relations to the exterior mass as in other cases. Beside the phase of the
exterior mass, there will always be another phase having the same tempera-
ture and potentials, but of the general nature of the small globule which is
surrounded by that mass and in equilibrium with it. This phase is completely
determined by the system considered, and in general entirely stable and per-
fectly capable of realization in mass, although not such that the exterior mass
could exist in contact with it at a plane surface. This is the phase which we
are to attribute to the mass which we conceive as existing within the dividing
surface.†

∗ See page 51, where the term stable is used (as indicated on page 50) in a less strict sense than in the
discussion which here follows.

† For example, in applying our formula to a microscopic globule of water in steam, by the density or
pressure of the interior mass we should understand, not the actual density or pressure at the center of the
globule, but the density of liquid water (in large quantities) which has the temperature and potential of the
steam.
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With this understanding with regard to the phase of the fictitious interior
mass, there will be no ambiguity in the meaning of any of the symbols which
we have employed, when applied to cases in which the surface of discontinuity
is spherical, however small the radius may be. Nor will the demonstration of
the general theorems require any material modification. The dividing surface
which determines the value of εS, ηS,mS

1,m
S
2, etc. is as in other cases to be

placed so as to make the term 1

2
pC1 ` C2q δ pc1 ` c2q in equation (494) vanish,

i.e., so as to make equation ( 497 ) valid. It has been shown on pages 177-179
that when thus placed it will sensibly coincide with the physical surface of
discontinuity, when this consists of a non-homogeneous film separating homo-
geneous masses, and having radii of curvature which are large compared with
its thickness. But in regard to globular masses too small for this theorem to
have any application, it will be worth while to examine how far we may be
certain that the radius of the dividing surface will have a real and positive
value, since it is only then that our method will have any natural application.

The value of the radius of the dividing surface, supposed spherical, of any
globule in equilibrium with a surrounding homogeneous fluid may be most
easily obtained by eliminating σ from equations (500) and (502), which have
been derived from ( 497 ), and contain the radius implicitly. If we write r for
this radius, equation ( 500 ) may be written

2σ “ pp1 ´ p2q r, (550)
the single and double accents referring respectively to the interior and exterior
masses. If we write rεs, rηs, rm1s , rm2s, etc., for the excess of the total energy,
entropy, etc., in and about the globular mass above what would be in the same
space if it were uniformly filled with matter of the phase of the exterior mass,
we shall have necessarily with reference to the whole dividing surface

εS “ rεs ´ v1 pε1
V ´ ε2

Vq , ηS “ rηs ´ v1 pη1
V ´ η2

Vq ,

mS
1 “ rm1s ´ v1 pγ1

1 ´ γ2
1q , mS

2 “ rm2s ´ v1 pγ1
2 ´ γ2

2q , etc.
where ε1

V, ε
2
V, η

1
V, η

2
V, γ

1
1, γ

2
1 , etc. denote, in accordance with our usage else-

where, the volume-densities of energy, of entropy, and of the various compo-
nents, in the two homogeneous masses. We may thus obtain from equation
(502)
σs “ rεs ´ v1 pε1

V ´ ε2
Vq ´ trηs ` tv1 pη1

V ´ η2
Vq

´ µ1 rm1s ` µ1v
1 pγ1

1 ´ γ2
1q ´ µ2 rm2s ` µ2v

1 pγ1
2 ´ γ2

2q ´ etc. (551)

But by (93).
p1 “ ´ε1

V ` tη1
V ` µ1γ

1
1 ` µ2γ

1
2 ` etc. ,

p2 “ ´ε2
V ` tη2

V ` µ1γ
2
1 ` µ2γ

2
2 ` etc.

Let us also write for brevity
W “ rεs ´ trηs ´ µ1 rm1s ´ µ2 rm2s ´ etc. (552)
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(It will be observed that the value of W is entirely determined by the nature
of the physical system considered, and that the notion of the dividing surface
does not in any way enter into its definition.) We shall then have

σs “ W ` v1 pp1 ´ p2q , (553)

or, substituting for s and v1 their values in terms of r.

4πr2σ “ W `
4

3
πr3 pp1 ´ p2q , (554)

and eliminating σ by (550),
2

3
πr3 pp1 ´ p2q “ W, (555)

r “

ˆ

3W

2π pp1 ´ p2q

˙

1
3

. (556)

If we eliminate r instead of σ, we have

16πσ3

3 pp1 ´ p2q
2 “ W, (557)

σ “

˜

3W pp1 ´ p2q
2

16π

¸

1
3

. (558)

Now, if we first suppose the difference of the pressures in the homogeneous
masses to be very small, so that the surface of discontinuity is nearly plane,
since without any important loss of generality we may regard σ as positive
(for if σ is not positive when p1 “ p2, the surface when plane would not be
stable in regard to position, as it certainly is, in every actual case, when the
proper conditions are fulfilled with respect to its perimeter), we see by (550)
that the pressure in the interior mass must be the greater; i.e., we may regard
σ, p1 ´ p2, and r as all positive. By (555), the value of W will also be positive.
But it is evident from equation (552), which defines W , that the value of this
quantity is necessarily real, in any possible case of equilibrium, and can only
become infinite when r becomes infinite and p1 “ p2. Hence, by (556) and
(558), as p1 ´ p2 increases from very small values, W , r, and σ have single,
real, and positive values until they simultaneously reach the value zero. Within
this limit, our method is evidently applicable; beyond this limit, if such exist,
it will hardly be profitable to seek to interpret the equations. But it must
be remembered that the vanishing of the radius of the somewhat arbitrarily
determined dividing surface may not necessarily involve the vanishing of the
physical heterogeneity. It is evident, however (see pp. 177-179), that the
globule must become insensible in magnitude before r can vanish.
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It may easily be shown that the quantity denoted by W is the work which
would be required to form (by a reversible process) the heterogeneous globule
in the interior of a very large mass having initially the uniform phase of the
exterior mass. For this work is equal to the increment of energy of the system
when the globule is formed without change of the entropy or volume of the
whole system or of the quantities of the several components. Now rηs, rm1s ,
rm2s, etc. denote the increments of entropy and of the components in the
space where the globule is formed. Hence these quantities with the negative
sign will be equal to the increments of entropy and of the components in the
rest of the system. And hence, by equation (86),

´trηs ´ µ1 rm1s ´ µ2 rm2s ´ etc.
will denote the increment of energy in all the system except where the glob-
ule is formed. But rεs denotes the increment of energy in that part of the
system. Therefore, by (552), W denotes the total increment of energy in the
circumstances supposed, or the work required for the formation of the globule.

The conclusions which may be drawn from these considerations with respect
to the stability of the homogeneous mass of the pressure p2 (supposed less than
p1, the pressure belonging to a different phase of the same temperature and
potentials) are very obvious. Within those limits within which the method
used has been justified, the mass in question must be regarded as in strictness
stable with respect to the growth of a globule of the kind considered, since W ,
the work required for the formation of such a globule of a certain size (viz.,
that which would be in equilibrium with the surrounding mass), will always
be positive. Nor can smaller globules be formed, for they can neither be in
equilibrium with the surrounding mass, being too small, nor grow to the size of
that to which W relates. If, however, by any external agency such a globular
mass (of the size necessary for equilibrium) were formed, the equilibrium has
already (page 195) been shown to be unstable, and with the least excess in size,
the interior mass would tend to increase without limit except that depending
on the magnitude of the exterior mass. We may therefore regard the quantity
W as affording a kind of measure of the stability of the phase to which p2

relates. In equation (557) the value of W is given in terms of σ and p1 ´ p2.
If the three fundamental equations which give σ, p1, and p2 in terms of the
temperature and the potentials were known, we might regard the stability
pW q as known in terms of the same variables. It will be observed that when
p1 “ p2 the value of W is infinite. If p1 ´ p2 increases without greater changes
of the phases than are necessary for such increase, W will vary at first very
nearly inversely as the square of p1 ´p2. If p1 ´p2 continues to increase, it may
perhaps occur that W reaches the value zero; but until this occurs the phase
is certainly stable with respect to the kind of change considered. Another kind
of change is conceivable, which initially is small in degree but may be great in
its extent in space. Stability in this respect or stability in respect to continuous
changes of phase has already been discussed (see page ??), and its limits
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determined. These limits depend entirely upon the fundamental equation of
the homogeneous mass of which the stability is in question. But with respect
to the kind of changes here considered, which are initially small in extent but
great in degree, it does not appear how we can fix the limits of stability with
the same precision. But it is safe to say that if there is such a limit it must
be at or beyond the limit at which σ vanishes. This latter limit is determined
entirely by the fundamental equation of the surface of discontinuity between
the phase of which the stability is in question and that of which the possible
formation is in question. We have already seen that when σ vanishes, the
radius of the dividing surface and the work W vanish with it. If the fault in
the homogeneity of the mass vanishes at the same time (it evidently cannot
vanish sooner), the phase becomes unstable at this limit. But if the fault in
the homogeneity of the physical mass does not vanish with r, σ and W , —and
no sufficient reason appears why this should not be considered as the general
case, —although the amount of work necessary to upset the equilibrium of
the phase is infinitesimal, this is not enough to make the phase unstable. It
appears therefore that W is a somewhat one-sided measure of stability.

It must be remembered in this connection that the fundamental equation
of a surface of discontinuity can hardly be regarded as capable of experimen-
tal determination, except for plane surfaces (see pp. 183-185), although the
relation for spherical surfaces is in the nature of things entirely determined, at
least so far as the phases are separately capable of existence. Yet the foregoing
discussion yields the following practical results. It has been shown that the
real stability of a phase extends in general beyond that limit (discussed on
pages (50-52), which may be called the limit of practical stability, at which
the phase can exist in contact with another at a plane surface, and a formula
has been deduced to express the degree of stability in such cases as measured
by the amount of work necessary to upset the equilibrium of the phase when
supposed to extend indefinitely in space. It has also been shown to be en-
tirely consistent with the principles established that this stability should have
limits, and the manner in which the general equations would accommodate
themselves to this case has been pointed out.

By equation (553), which may be written

W “ σs ´ pp1 ´ p2q v1, (559)

we see that the work W consists of two parts, of which one is always positive,
and is expressed by the product of the superficial tension and the area of the
surface of tension, and the other is always negative, and is numerically equal to
the product of the difference of pressure by the volume of the interior mass. We
may regard the first part as expressing the work spent in forming the surface
of tension, and the second part the work gained in forming the interior mass.∗
Moreover, the second of these quantities, if we neglect its sign, is always equal

∗ To make the physical significance of the above more clear, we may suppose the two processes to be
performed separately in the following manner. We may suppose a large mass of the same phase as that
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to two-thirds of the first, as appears from equation (550) and the geometrical
relation v1 “

1

3
rs. We may therefore write

W “
1

3
σs “

1

2
pp1 ´ p2q v1. (560)

On the Possible Formation at the Surface where two dif-
ferent Homogeneous Fluids meet of a Fluid of different
Phase from either.

Let A, B, and C be three different fluid phases of matter, which satisfy all the
conditions necessary for equilibrium when they meet at plane surfaces. The
components of A and B may be the same or different, but C must have no
components except such as belong to A or B. Let us suppose masses of the
phases A and B to be separated by a very thin sheet of the phase C. This
sheet will not necessarily be plane, but the sum of its principal curvatures
must be zero. We may treat such a system as consisting simply of masses of
the phases A and B with a certain surface of discontinuity, for in our previous
discussion there has been nothing to limit the thickness or the nature of the
film separating homogeneous masses, except that its thickness has generally
been supposed to be small in comparison with its radii of curvature. The value
of the superficial tension for such a film will be σAC ` σBC, if we denote by
these symbols the tensions of the surfaces of contact of the phases A and C,
and B and C, respectively. This not only appears from evident mechanical
considerations, but may also be easily verified by equations (502) and (93),
the first of which may be regarded as defining the quantity σ. This value
will not be affected by diminishing the thickness of the film, until the limit
is reached at which the interior of the film ceases to have the properties of
matter in mass. Now if σAC ` σBC is greater than σAB, the tension of the
ordinary surface between A and B, such a film will be at least practically
which has the volume v1 to exist initially in the interior of the other. Of course, it mast be surrounded by
a resisting envelop, on account of the difference of the pressures. We may, however, suppose this envelop
permeable to all the component substances, although not of such properties that a mass can form on the
exterior like that within. We may allow the envelop to yield to the internal pressure until its contents are
increased by of without materially affecting its superficial area. If this be done sufficiently slowly, the phase
of the mass within will remain constant. (See page ??.) A homogeneous mass of the volume v1 and of the
desired phase has thus been produced, and the work gained is evidently pp1 ´ p2q v1.

Let us suppose that a small aperture is now opened and closed in the envelop so as to let out exactly
the volume v1 of the mass within, the envelop being pressed inwards in another place so as to diminish its
contents by this amount. During the extrusion of the drop and until the orifice is entirely closed, the surface
of the drop must adhere to the edge of the orifice, but not elsewhere to the outside surface of the envelop.
The work done in forming the surface of the drop will evidently be σs or 3

2
pp1 ´ p2q v1. Of this work, the

amount pp1 ´ p2q v1 will be expended in pressing the envelop inward, and the rest in opening and closing the
orifice. Both the opening and the closing will be resisted by the capillary tension. If the orifice is circular,
it must have, when widest open, the radius determined by equation ( 550 ).
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unstable. (See page 192.) We cannot suppose that σAB ą σAC ` σBC , for this
would make the ordinary surface between A and B unstable and difficult to
realize. If σAB “ σAC ` σBC, we may assume, in general, that this relation is
not accidental, and that the ordinary surface of contact for A and B is of the
kind which we have described.

Let us now suppose the phases A and B to vary, so as still to satisfy the
conditions of equilibrium at plane contact, but so that the pressure of the phase
C determined by the temperature and potentials of A and B shall become less
than the pressure of A and B. A system consisting of the phases A and B will
be entirely stable with respect to the formation of any phase like C. (This
case is not quite identical with that considered on page 51, since the system in
question contains two different phases, but the principles involved are entirely
the same.)

With respect to variations of the phases A and B in the opposite direction
we must consider two cases separately. It will be convenient to denote the
pressures of the three phases by pA, pB, pC, and to regard these quantities as
functions of the temperature and potentials.

If σAB “ σAC ` σBC for values of the temperature and potentials which
make pA “ pB “ pC, it will not be possible to alter the temperature and
potentials at the surface of contact of the phases A and B so that pA “ pB,
and pC ą pA, for the relation of the temperature and potentials necessary for
the equality of the three pressures will be preserved by the increase of the mass
of the phase C. Such variations of the phases A and B might be brought about
in separate masses, but if these were brought into contact, there would be an
immediate formation of a mass of the phase C, with reduction of the phases of
the adjacent masses to such as satisfy the conditions of equilibrium with that
phase.

But if σAB ă σAC`σBC, we can vary the temperature and potentials so that
pA “ pB, and pC ą pA, and it will not be possible for a sheet of the phase of C
to form immediately, i.e., while the pressure of C is sensibly equal to that of A
and B; for mechanical work equal to σAC `σBC ´σAB per unit of surface might
be obtained by bringing the system into its original condition, and therefore
produced without any external expenditure, unless it be that of heat at the
temperature of the system, which is evidently incapable of producing the work.
The stability of the system in respect to such a change must therefore extend
beyond the point where the pressure of C commences to be greater than that
of A and B. We arrive at the same result if we use the expression (520) as
a test of stability. Since this expression has a finite positive value when the
pressures of the phases are all equal, the ordinary surface of discontinuity must
be stable, and it must require a finite change in the circumstances of the case
to make it become unstable.∗

∗ It is true that such a case as we are now considering is formally excluded in the discussion referred to,
which relates to a plane surface, and in which the system is supposed thoroughly stable with respect to the
possible formation of any different homogeneous masses. Yet the reader will easily convince himself that
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In the preceding paragraph it is shown that the surface of contact of phases
A and B is stable under certain circumstances, with respect to the formation of
a thin sheet of the phase C. To complete the demonstration of the stability of
the surface with respect to the formation of the phase C, it is necessary to show
that this phase cannot be formed at the surface in lentiform masses. This is the
more necessary, since it is in this manner, if at all, that the phase is likely to
be formed, for an incipient sheet of phase C would evidently be unstable when
σAB ă σAC ` σBC, and would immediately break up into lentiform masses.

It will be convenient to consider first a lentiform mass of phase C in equi-
librium between masses of phases A and B which meet in a plane surface.
Let figure 10 represent a section of such a system through the centers of the
spherical surfaces, the mass of phase A lying on the left of DEH1FG, and that
of phase B on the right of DEH2FG. Let the line joining the centers cut the
spherical surfaces in H1 and H2, and the plane of the surface of contact of A
and B in I. Let the radii of EH1F and EH2F be denoted by r1, r2, and the
segments IH1, IH2, by x1, x2. Also let IE, the radius of the circle in which the
spherical surfaces intersect, be denoted by R. By a suitable application of the
the criterion (520) is perfectly valid in this case with respect to the possible formation of a thin sheet of the
phase C, which, as we have seen, may be treated simply as a different kind of surface of discontinuity.
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general condition of equilibrium we may easily obtain the equation

σAC
r1 ´ x1

r1
` σBC

r2 ´ x2

r2
“ σAB, (561)

which signifies that the components parallel to EF of the tension σAC and σBC

are together equal to σAB. If we denote by W the amount of work which must
be expended in order to form such a lentiform mass as we are considering
between masses of indefinite extent having the phases A and B, we may write

W “ M ´ N, (562)

where M denotes the work expended in replacing the surface between A and
B by the surfaces between A and C and B and C, and N denotes the work
gained in replacing the masses of phases A and B by the mass of phase C.
Then

M “ σACsAC ` σBCsBC ´ σABsAB, (563)
where sAC, sBC, sAB denote the areas of the three surfaces concerned; and

N “ V 1 ppC ´ pAq ` V 2 ppC ´ pBq , (564)

where V 1 and V 2 denote the volumes of the masses of the phases A and B
which are replaced. Now by (500),

pC ´ pA “
2σAC

r1
, and pC ´ pB “

2σBC

r2
. (565)

We have also the geometrical relations

V 1 “
2

3
πr12x1 ´

1

3
πR2 pr1 ´ x1q ,

V 2 “
2

3
πr22x2 ´

1

3
πR2 pr2 ´ x2q .

,

/

.

/

-

(566)

By substitution we obtain

N “
4

3
πσACr

1x1 ´
2

3
πR2σAC

r1 ´ x1

r1
`

4

3
πσBCr

2x2 ´
2

3
πR2σBC

r2 ´ x2

r2
, (567)

and by (561),

N “
4

3
πσACr

1x1 `
4

3
πσBCr

2x2 ´
2

3
πR2σAB. (568)

Since
2πr1x1 “ sAC, 2πr2x2 “ sBC, πR2 “ sAB,

we may write
N “

2

3
pσACsAC ` σBCsBC ´ σABsABq . (569)
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(The reader will observe that the ratio of M and N is the same as that of
the corresponding quantities in the case of the spherical mass treated on pages
204-210.) We have therefore

W “
1

3
pσACsAC ` σBCsBC ´ σABsABq . (570)

This value is positive so long as

σAC ` σBC ą σAB,

since
sAC ą sAB, and sBC ą sAB.

But at the limit, when
σAC ` σBC “ σAB,

we see by (561) that

sAC “ sAB, and sBC “ sAB

and therefore
W “ 0.

It should however be observed that in the immediate vicinity of the circle in
which the three surfaces of discontinuity intersect, the physical state of each
of these surfaces must be affected by the vicinity of the others. We cannot,
therefore, rely upon the formula (570) except when the dimensions of the
lentiform mass are of sensible magnitude.

We may conclude that after we pass the limit at which pC becomes greater
than pA and pB (supposed equal) lentiform masses of phase C will not be formed
until either σAB “ σAC ` σBC, or pC ´ pA becomes so great that the lentiform
mass which would be in equilibrium is one of insensible magnitude. [The
diminution of the radii with increasing values of pC´pA is indicated by equation
(565).] Hence, no mass of phase C will be formed until one of these limits is
reached. Although the demonstration relates to a plane surface between A
and B, the result must be applicable whenever the radii of curvature have a
sensible magnitude, since the effect of such curvature may be disregarded when
the lentiform mass is sufficiently small.

The equilibrium of the lentiform mass of phase C is easily proved to be
unstable, so that the quantity W affords a kind of measure of the stability of
plane surfaces of contact of the phases A and B.∗

∗ If we represent phases by the position of points in such a manner that coexistent phases (in the sense
in which the term is used on page 43) are represented by the same point, and allow ourselves, for brevity,
to speak of the phases as having the positions of the points by which they are represented, we may say
that three coexistent phases are situated where three series of pairs of coexistent phases meet or intersect.
If the three phases are an fluid, or when the effects of solidity may be disregarded, two cases are to be
distinguished. Either the three series of coexistent phases all intersect, —this is when each of the three
surface tensions is less than the sum of the two others, — or one of the series terminates where the two
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Essentially the same principles apply to the more general problem in which
the phases A and B have moderately different pressures, so that their surfaces
of contact must be curved, but the radii of curvature have a sensible magnitude.

In order that a thin film of the phase C may be in equilibrium between
masses of the phases A and B, the following equations must be satisfied:—

σAC pc1 ` c2q “ pA ´ pC,

σBC pc1 ` c2q “ pC ´ pB,

where c1 and c2 denote the principal curvatures of the film, the centers of
positive curvature lying in the mass having the phase A. Eliminating c1 ` c2,
we have

σBC ppA ´ pCq “ σAC ppC ´ pBq ,

pC “
σBCpA ` σACpB
σBC ` σAC

(571)

It is evident that if pC has a value greater than that determined by this equa-
tion, such a film will develop into a larger mass; if pC has a less value, such a
film will tend to diminish. Hence, when

pC ă
σBCpA ` σACpB
σBC ` σAC

, (572)

the phases A and B have a stable surface of contact.
Again, if more than one kind of surface of discontinuity is possible between

A and B, for any given values of the temperature and potentials, it will be
impossible for that having the greater tension to displace the other, at the
temperature and with the potentials considered. Hence, when pC has the value
determined by equation (571), and consequently σAC ` σBC is one value of the
tension for the surface between A and B, it is impossible that the ordinary
tension of the surface σAB should be greater than this. If σAB “ σAC ` σBC,
when equation (571) is satisfied, we may presume that a thin film of the phase
C actually exists at the surface between A and B, and that a variation of the
phases such as would make pC greater than the second member of ( 571 ) cannot
be brought about at that surface, as it would be prevented by the formation
of a larger mass of the phase C. But if σAB ă σAC ` σBC when equation
(571) is satisfied, this equation does not mark the limit of the stability of the
surface between A and B, for the temperature or potentials must receive a
finite change before the film of phase C, or (as we shall see in the following
paragraph) a lentiform mass of that phase, can be formed.
others intersect, —this is where one surface tension is equal to the sum of the others. The series of coexistent
phases will be represented by lines or surfaces, according as the phases have one or two independently variable
components. Similar relations exist when the number of components is greater, except that they are not
capable of geometrical representation without some limitation, as that of constant temperature or pressure
or certain constant potentials.
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The work which must be expended in order to form on the surface between
indefinitely large masses of phases A and B a lentiform mass of phase C in
equilibrium, may evidently be represented by the formula

W “σACSAC ` σBCSBC ´ σABSAB

´ pCVC ` pAVA ` pBVB,
(573)

where SAC, SBC denote the areas of the surfaces formed between A and C,
and B and C, SAB the diminution of the area of the surface between A and
B, VC the volume formed of the phase C, and VA, VB the diminution of the
volumes of the phases A and B. Let us now suppose σAC, σBC, σAB, pA, pB
to remain constant and the external boundary of the surface between A and
B to remain fixed, while pC increases and the surfaces of tension receive such
alterations as are necessary for equilibrium. It is not necessary that this should
be physically possible in the actual system; we may suppose the changes to take
place, for the sake of argument, although involving changes in the fundamental
equations of the masses and surfaces considered. Then, regarding W simply
as an abbreviation for the second member of the preceding equation, we have

dW “ σACdSAC ` σBCdSBC ´ σABdSAB

´ pCdVC ` pAdVA ` pBdVB ´ VCdpC.
(574)

But the conditions of equilibrium require that

σACdSAC ` σBCdSBC ´ σABdSAB

´ pCdVC ` pAdVA ` pBdVB “ 0.
(575)

Hence,
dW “ ´VCdpC. (576)

Now it is evident that VC will diminish as pC increases. Let us integrate the
last equation supposing pC to increase from its original value until VC vanishes.
This will give

W 2 ´ W 1 “ a negative quantity, (577)
where W 1 and W 2 denote the initial and final values of W . But W 2 “ 0. Hence
W 1 is positive. But this is the value of W in the original system containing the
lentiform mass, and expresses the work necessary to form the mass between
the phases A and B. It is therefore impossible that such a mass should form on
a surface between these phases. We must however observe the same limitation
as in the less general case already discussed, —that pC ´ pA, pC ´ pB must
not be so great that the dimensions of the lentiform mass are of insensible
magnitude. It may also be observed that the value of these differences may
be so small that there will not be room on the surface between the masses of
phases A and B for a mass of phase C sufficiently large for equilibrium. In
this case we may consider a mass of phase C which is in equilibrium upon the
surface between A and B in virtue of a constraint applied to the line in which
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the three surfaces of discontinuity intersect, which will not allow this line to
become longer, although not preventing it from becoming shorter. We may
prove that the value of W is positive by such an integration as we have used
before.

Substitution of Pressures for Potentials in Fundamental
Equations for Surfaces.

The fundamental equation of a surface which gives the value of the tension in
terms of the temperature and potentials seems best adapted to the purposes
of theoretical discussion, especially when the number of components is large
or undetermined. But the experimental determination of the fundamental
equations, or the application of any result indicated by theory to actual cases,
will be facilitated by the use of other quantities in place of the potentials,
which shall be capable of more direct measurement, and of which the numerical
expression (when the necessary measurements have been made) shall depend
upon less complex considerations. The numerical value of a potential depends
not only upon the system of units employed, but also upon the arbitrary
constants involved in the definition of the energy and entropy of the substance
to which the potential relates, or, it may be, of the elementary substances of
which that substance is formed. (See page 43.) This fact and the want of
means of direct measurement may give a certain vagueness to the idea of the
potentials, and render the equations which involve them less fitted to give a
clear idea of physical relations.

Now the fundamental equation of each of the homogeneous masses which
are separated by any surface of discontinuity affords a relation between the
pressure in that mass and the temperature and potentials. We are therefore
able to eliminate one or two potentials from the fundamental equation of a
surface by introducing the pressures in the adjacent masses. Again, when
one of these masses is a gas-mixture which satisfies Dalton’s law as given
on page 103, the potential for each simple gas may be expressed in terms
of the temperature and the partial pressure belonging to that gas. By the
introduction of these partial pressures we may eliminate as many potentials
from the fundamental equation of the surface as there are simple gases in the
gas-mixture.

An equation obtained by such substitutions may be regarded as a funda-
mental equation for the surface of discontinuity to which it relates, for when
the fundamental equations of the adjacent masses are known, the equation in
question is evidently equivalent to an equation between the tension, temper-
ature, and potentials, and we must regard the knowledge of the properties of
the adjacent masses as an indispensable preliminary, or an essential part, of a
complete knowledge of any surface of discontinuity. It is evident, however, that
from these fundamental equations involving pressures instead of potentials we
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cannot obtain by differentiation (without the use of the fundamental equations
of the homogeneous masses) precisely the same relations as by the differen-
tiation of the equations between the tensions, temperatures, and potentials.
It will be interesting to inquire, at least in the more important cases, what
relations may be obtained by differentiation from the fundamental equations
just described alone.

If there is but one component, the fundamental equations of the two homo-
geneous masses afford one relation more than is necessary for the elimination
of the potential. It may be convenient to regard the tension as a function of
the temperature and the difference of the pressures. Now we have by (508)
and (98)

dσ “ ´ηSdt ´ Γdµ1,

d pp1 ´ p2q “ pη1
V ´ η2

Vq dt ` pγ1 ´ γ2q dµ1.

Hence we derive the equation

dσ “ ´

ˆ

ηS ´
Γ

γ1 ´ γ2
pη1

V ´ η2
Vq

˙

dt ´
Γ

γ1 ´ γ2
d pp1 ´ p2q , (578)

which indicates the differential coefficients of σ with respect to t and p1 ´

p2. For surfaces which may be regarded as nearly plane, it is evident that
Γ

γ1 ´ γ2
represents the distance from the surface of tension to a dividing surface

located so as to make the superficial density of the single component vanish
(being positive, when the latter surface is on the side specified by the double
accents), and that the coefficient of dt (without the negative sign) represents
the superficial density of entropy as determined by the latter dividing surface,
i.e., the quantity denoted by ηSp1q on page 187.

When there are two components, neither of which is confined to the surface
of discontinuity, we may regard the tension as a function of the temperature
and the pressures in the two homogeneous masses. The values of the differential
coefficients of the tension with respect to these variables may be represented
in a simple form if we choose such substances for the components that in the
particular state considered each mass shall consist of a single component. This
will always be possible when the composition of the two masses is not identical,
and will evidently not affect the values of the differential coefficients. We then
have

dσ “ ´ηSdt ´ Γ1dµ1 ´ Γ2dµ2,

dp1 “ η1
Vdt ` γ1dµ1,

dp2 “ η2
Vdt ` γ2dµ2,

where the marks, and are used instead of the usual 1 and 2 to indicate the
identity of the component specified with the substance of the homogeneous
masses specified by 1 and 2. Eliminating dµ1, and dµ2, we obtain

dσ “ ´

ˆ

ηS ´
Γ1

γ1
η1
V ´

Γ2

γ2
η2
V

˙

dt ´
Γ1

γ1
dp1 ´

Γ2

γ2
dp2 (579)
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We may generally neglect the difference of p1 and p2, and write

dσ “ ´

ˆ

ηS ´
Γ1

γ1
η1
V ´

Γ2

γ2
η2
V

˙

dt ´

ˆ

Γ1

γ1
`

Γ2

γ2

˙

dp. (580)

The equation that modified is strictly to be regarded as the equation for a
plane surface. It is evident that Γ1

γ1
and Γ2

γ2
represent the distances from the

surface of tension of the two surfaces of which one would make Γ1 vanish, and
the other Γ2, that Γ1

γ1
`

Γ2

γ2
represents the distance between these two surfaces,

or the diminution of volume due to a unit of the surface of discontinuity, and
that the coefficient of dt (without the negative sign) represents the excess of
entropy in a system consisting of a unit of the surface of discontinuity with a
part of each of the adjacent masses above that which the same matter would
have if it existed in two homogeneous masses of the same phases but without
any surface of discontinuity. (A mass thus existing without any surface of
discontinuity must of course be entirely surrounded by matter of the same
phase.)∗

The form in which the values of
ˆ

dσ

dt

˙

p

and
ˆ

dσ

dp

˙

t

are given in equation

(580) is adapted to give a clear idea of the relations of these quantities to the
particular state of the system for which they are to be determined, but not to

∗ If we set
V “ ´

Γ1

γ1
´

Γ2

γ2
, (a)

HS “ ηS ´
Γ1

γ1
η1
V ´

Γ2

γ2
η2
V, (b)

and in like manner
ES “ εS ´

Γ1

γ1
ε1
V ´

Γ2

γ2
ε2
V. (c)

we may easily obtain, by means of equations (93) and (507),

ES “ tHS ` σ ´ p V. (d)

Now equation (580) may be written
dσ “ ´HSdt ` V dp. (e)

Differentiating (d), and comparing the result with (e), we obtain

dES “ tdHS ´ pdV. (f)

The quantities ES and HS might be called the superficial densities of energy and entropy quite as properly
as those which we denote by εS and ηS. In fact, when the composition of both of the homogeneous masses
is invariable, the quantities ES and HS are much more simple in their definition than εS and ηS, and would
probably be more naturally suggested by the terms superficial density of energy and of entropy. It would
also be natural in this case to regard the quantities of the homogeneous masses as determined by the total
quantities of matter, and not by the surface of tension or any other dividing surface. But such a nomenclature
and method could not readily be extended so as to treat cases of more than two components with entire
generality.

In the treatment of surfaces of discontinuity in this paper, the definitions and nomenclature which have
been adopted will be strictly adhered to. The object of this note is to suggest to the reader how a different
method might be used in some cases with advantage, and to show the precise relations between the quantities
which ace used in this paper and others which might be confounded with them, and which may be made
more prominent when the object is treated differently.
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show how they vary with the state of the system. For this purpose it will be
convenient to have the values of these differential coefficients expressed with
reference to ordinary components. Let these be specified as usual by 1 and 2.
If we eliminate dµ1 and dµ2 from the equations

´dσ “ ηSdt ` Γ1dµ1 ` Γ2dµ2,

dp “ η1
Vdt ` γ1

1dµ1 ` γ1
2dµ2,

dp “ η2
Vdt ` γ2

1dµ1 ` γ2
2dµ2,

we obtain
dσ “

B

A
dt `

C

A
dp, (581)

where
A “ γ2

1γ
1
2 ´ γ1

1γ
2
2 , (582)

B “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ηS Γ1 Γ2

η1
V γ1

1 γ1
2

η2
V γ2

1 γ2
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (583)

C “ Γ1 pγ2
2 ´ γ1

2q ` Γ2 pγ1
1 ´ γ2

1q . (584)
It will be observed that A vanishes when the composition of the two homoge-
neous masses is identical, while B and C do not, in general, and that the value
of A is negative or positive according as the mass specified by 1 contains the
component specified by 1 in a greater or less proportion than the other mass.
Hence, the values both of

ˆ

dσ

dt

˙

p

and of
ˆ

dσ

dp

˙

t

become infinite when the

difference in the composition of the masses vanishes, and change sign when
the greater proportion of a component passes from one mass to the other.
This might be inferred from the statements on page 46 respecting coexistent
phases which are identical in composition, from which it appears that when
two coexistent phases have nearly the same composition, a small variation of
the temperature or pressure of the coexistent phases will cause a relatively
very great variation in the composition of the phases. The same relations are
indicated by the graphical method represented in figure 6 on page 72.

With regard to gas-mixtures which conform to Dalton’s law, we shall only
consider the fundamental equation for plane surfaces, and shall suppose that
there is not more than one component in the liquid which does not appear
in the gas-mixture. We have already seen that in limiting the fundamental
equation to plane surfaces we can get rid of one potential by choosing such a
dividing surface that the superficial density of one of the components vanishes.
Let this be done with respect to the component peculiar to the liquid, if such
there is; if there is no such component, let it be done with respect to one
of the gaseous components. Let the remaining potentials be eliminated by
means of the fundamental equations of the simple gases. We may thus obtain
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an equation between the superficial tension, the temperature, and the several
pressures of the simple gases in the gas-mixture or all but one of these pressures.
Now, if we eliminate dµ2, dµ3, etc. from the equations

dσ “ ´ηsp1qdt ´ Γ2p1qdµ2 ´ Γ3p1qdµ3 ´ etc.
dp2 “ ηV2dt ` γ2dµ2,

dp3 “ ηV3dt ` γ3dµ3,

etc.
where the suffix 1 relates to the component of which the surface density has
been made to vanish, and γ2, γ3, etc. denote the densities of the gases specified
in the gas-mixture, and p2, p3, etc., ηV1 , ηV 3, etc. the area and the densities of
entropy due to these several gases, we obtain

dσ “ ´

ˆ

ηSp1q ´
Γ2p1q

γ2
ηV2 ´

Γ3p1q

γ3
ηV3 ´ etc.

˙

dt

´
Γ2p1q

γ2
dp2 ´

Γ3p1q

γ3
dp3 ´ etc.

(585)

This equation affords values of the differential coefficients of σ with respect to
t, p2, p3, etc., which may be set equal to those obtained by differentiating the
equation between these variables.

Thermal and Mechanical Relations pertaining to the Ex-
tension of a Surface of Discontinuity.

The fundamental equation of a surface of discontinuity with one or two com-
ponent substances, besides its statical applications, is of use to determine the
heat absorbed when the surface is extended under certain conditions.

Let us first consider the case in which there is only a single component
substance. We may treat the surface as plane, and place the dividing surface
so that the surface density of the single component vanishes. (See page 186.) If
we suppose the area of the surface to be increased by unity without change of
temperature or of the quantities of liquid and vapor, the entropy of the whole
will be increased by ηSp1q. Therefore if we denote by Q the quantity of heat
which must be added to satisfy the conditions, we shall have and by (514),

Q “ tηSp1q, (586)

Q “ ´t
dσ

dt
“ ´

dσ

d log t
, (587)

It will be observed that the condition of constant quantities of liquid and va-
por as determined by the dividing surface which we have adopted is equivalent
to the condition that the total volume shall remain constant.
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Again, if the surface is extended without application of heat, while the pres-
sure in the liquid and vapor remains constant, the temperature will evidently
be maintained constant by condensation of the vapor. If we denote by M the
mass of vapor condensed per unit of surface formed, and by η1

M and η2
M the

entropies of the liquid and vapor per unit of mass, the condition of no addition
of heat will require that

M pη2
M ´ η1

Mq “ ηMp1q (588)

The increase of the volume of liquid will be
ηSp1q

γ1 pη2
M ´ η1

Mq
(589)

and the diminution of the volume of vapor
ηSp1q

γ2 pη2
M ´ η1

Mq
1 (590)

Hence, for the work done (per unit of surface formed) by the external bodies
which maintain the pressure, we shall have

W “
pηSp1q

η2
M ´ η1

M

ˆ

1

γ2
´

1

γ1

˙

, (591)

and, by (514) and (131),

W “ ´p
dσ

dt

dt

dp
“ ´p

dσ

dp
“ ´

dσ

d log p
. (592)

The work expended directly in extending the film will of course be equal to σ.
Let us now consider the case in which there are two component substances,

neither of which is continued to the surface. Since we cannot make the super-
ficial density of both these substances vanish by any dividing surface, it will
be best to regard the surface of tension as the dividing surface. We may, how-
ever, simplify the formula by choosing such substances for components that
each homogeneous mass shall consist of a single component. Quantities relat-
ing to these components will be distinguished as on page 218. If the surface is
extended until its area is increased by unity, while heat is added at the surface
so as to keep the temperature constant, and the pressure of the homogeneous
masses is also kept constant, the phase of these masses will necessarily remain
unchanged, but the quantity of one will be diminished by Γ1, and that of the
other by Γ2. Their entropies will therefore be diminished by Γ1

γ1
η1
V and Γ2

γ2
η2
V,

respectively. Hence, since the surface receives the increment of entropy ηS, the
total quantity of entropy will be increased by

ηS ´
Γ1

γ1
η1
V ´

Γ2

γ2
η2
V,
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which by equation (580) is equal to

´

ˆ

dσ

dt

˙

p

.

Therefore, for the quantity of heat Q imparted to the surface, we shall have

Q “ ´t

ˆ

dσ

dt

˙

p

“ ´

ˆ

dσ

d log t

˙

p

. (593)

We must notice the difference between this formula and (587). In (593)
the quantity of heat Q is determined by the condition that the temperature
and pressures shall remain constant. In (587) these conditions are equivalent
and insufficient to determine the quantity of heat. The additional condition
by which Q is determined may be most simply expressed by saying that the
total volume must remain constant. Again, the differential coefficient in (593)
is defined by considering p as constant; in the differential coefficient in (587)
p cannot be considered as constant, and no condition is necessary to give
the expression a definite value. Yet, notwithstanding the difference of the
two cases, it is quite possible to give a single demonstration which shall be
applicable to both. This may be done by considering a cycle of operations
after the method employed by Sir William Thomson, who first pointed out
these relations.∗

The diminution of volume (per unit of surface formed) will be

V “
Γ1

γ1
`

Γ2

γ2
“ ´

ˆ

dσ

dp

˙

t

; (594)

and the work done (per unit of surface formed) by the external bodies which
maintain the pressure constant will be

W “ ´p

ˆ

dσ

dp

˙

t

“ ´

ˆ

dσ

d log p

˙

t

(595)

Compare equation (592).
The values of Q and W may also be expressed in terms of quantities relating

to the ordinary components. By substitution in (593) and (595) of the values
of the differential coefficients which are given by (581), we obtain

Q “ ´t
B

A
, W “ ´p

C

A
. (596)

where A,B, and C represent the expressions indicated by (582)-(584). It
will be observed that the values of Q and W are in general infinite for the
surface of discontinuity between coexistent phases which differ infinitesimally

∗ See Proc. Roy. Soc., vol. ix, p. 255 (June, 1858); or Phil. Mag., ser. 4, vol xvii, p. 61.
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in composition, and change sign with the quantity A. When the phases are
absolutely identical in composition, it is not in general possible to counteract
the effect of extension of the surface of discontinuity by any supply of heat. For
the matter at the surface will not in general have the same composition as the
homogeneous masses, and the matter required for the increased surface cannot
be obtained from these masses without altering their phase. The infinite values
of Q and W are explained by the fact that when the phases are nearly identical
in composition, the extension of the surface of discontinuity is accompanied
by the vaporization or condensation of a very large mass, according as the
liquid or the vapor is the richer in that component which is necessary for the
formation of the surface of discontinuity.

If, instead of considering the amount of heat necessary to keep the phases
from altering while the surface of discontinuity is extended, we consider the
variation of temperature caused by the extension of the surface while the pres-
sure remains constant, it appears that this variation of temperature changes
sign with γ2

1γ
1
2 ´ γ1

1γ
2
2 , but vanishes with this quantity, i.e, vanishes when the

composition of the phases becomes the same. This may be inferred from the
statements on page 46, or from a consideration of the figure on page 72. When
the composition of the homogeneous masses is initially absolutely identical,
the effect on the temperature of a finite extension or contraction of the sur-
face of discontinuity will be the same, —either of the two will lower or raise
the temperature according as the temperature is a maximum or minimum for
constant pressure.

The effect of the extension of a surface of discontinuity which is most easily
verified by experiment is the effect upon the tension before complete equilib-
rium has been reëstablished throughout the adjacent masses. A fresh surface
between coexistent phases may be regarded in this connection as an extreme
case of a recently extended surface. When sufficient time has elapsed after the
extension of a surface originally in equilibrium between coexistent phases, the
superficial tension will evidently have sensibly its original value, unless there
are substances at the surface which are either not found at all in the adjacent
masses, or are found only in quantities comparable to those in which they
exist at the surface. But a surface newly formed or extended may have a very
different tension.

This will not be the case, however, when there is only a single component
substance, since all the processes necessary for equilibrium are confined to
a film of insensible thickness, and will require no appreciable time for their
completion.

When there are two components, neither of which is confined to the surface
of discontinuity, the reëstablishment of equilibrium after the extension of the
surface does not necessitate any processes reaching into the interior of the
masses except the transmission of heat between the surface of discontinuity
and the interior of the masses. It appears from equation (593) that if the
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tension of the surface diminishes with a rise of temperature, heat must be
supplied to the surface to maintain the temperature uniform when the surface
is extended, i.e., the effect of extending the surface is to cool it; but if the
tension of any surface increases with the temperature, the effect of extending
the surface will be to raise its temperature. In either case, it will be observed,
the immediate effect of extending the surface is to increase its tension. A
contraction of the surface will of course have the opposite effect. But the
time necessary for the reëstablishment of sensible thermal equilibrium after
extension or contraction of the surface must in most cases be very short.

In regard to the formation or extension of a surface between two coexistent
phases of more than two components, there are two extreme cases which it is
desirable to notice. When the superficial density of each of the components
is exceedingly small compared with its density in either of the homogeneous
masses, the matter (as well as the heat) necessary for the formation or exten-
sion of the normal surface can be taken from the immediate vicinity of the
surface without sensibly changing the properties of the masses from which it
is taken. But if any one of these superficial densities has a considerable value,
while the density of the same component is very small in each of the homo-
geneous masses, both absolutely and relatively to the densities of the other
components, the matter necessary for the formation or extension of the nor-
mal surface must come from a considerable distance. Especially if we consider
that a small difference of density of such a component in one of the homo-
geneous masses will probably make a considerable difference in the value of
the corresponding potential [see eq. (217)], and that a small difference in the
value of the potential will make a considerable difference in the tension [see eq.
(508)], it will be evident that in this case a considerable time will be necessary
after the formation of a fresh surface or the extension of an old one for the
reëstablishment of the normal value of the superficial tension. In intermediate
cases, the reestablishment of the normal tension will take place with different
degrees of rapidity.

But whatever the number of component substances, provided that it is
greater than one, and whether the reëstablishment of equilibrium is slow or
rapid, extension of the surface will generally produce increase and contraction
decrease of the tension. It would evidently be inconsistent with stability that
the opposite effects should be produced. In general, therefore, a fresh surface
between coexistent phases has a greater tension than an old one.∗ By the use
of fresh surfaces, in experiments in capillarity, we may sometimes avoid the
effect of minute quantities of foreign substances, which may be present without
our knowledge or desire, in the fluids which meet at the surface investigated.

When the establishment of equilibrium is rapid, the variation of the tension
∗ When, however, homogeneous masses which have not coexistent phases are brought in contact, the

superficial tension may increase with the course of time. The superficial tension of a drop of alcohol and
water placed in a large room will increase as the potential for alcohol is equalized throughout the room, and
is diminished in the vicinity of the surface of discontinuity.

225



from its normal value will be manifested especially during the extension or
contraction of the surface, the phenomenon resembling that of viscosity, except
that the variations of tension arising from variations in the densities at and
about the surface will be the same in all directions, while the variations of
tension due to any property of the surface really analogous to viscosity would
be greatest in the direction of the most rapid extension.

We may here notice the different action of traces in the homogeneous masses
of those substances which increase the tension and of those which diminish it.
When the volume-densities of a component are very small, its surface-density
may have a considerable positive value, but can only have a very minute nega-
tive one.∗ For the value when negative cannot exceed (numerically) the product
of the greater volume-density by the thickness of the non-homogeneous film.
Each of these quantities is exceedingly small. The surface density when posi-
tive is of the same order of magnitude as the thickness of the non-homogeneous
film, but is not necessarily small compared with other surface-densities because
the volume-densities of the same substance in the adjacent masses are small.
Now the potential of a substance which forms a very small part of a homoge-
neous mass certainly increases, and probably very rapidly, as the proportion
of that component is increased. [See (171) and (217).] The pressure, tempera-
ture, and the other potentials, will not be sensibly affected. [See (98).] But the
effect on the tension of this increase of the potential will be proportional to the
surface-density, and will be to diminish the tension when the surface-density
is positive. [See (508).] It is therefore quite possible that a very small trace of
a substance in the homogeneous masses should greatly diminish the tension,
but not possible that such a trace should greatly increase it. †

∗ It is here supposed that we have chosen for components such substances as are incapable of resolution
into other components which are independently variable in the homogeneous masses. In a mixture of alcohol
and water, for example, the components must be pure alcohol and pure water.

† From the experiments of S. E. Duclaux (Annales de Chimie et de Physique, ser. 4, vol. xxi, p. 383),
it appears that one per cent. of alcohol in water will diminish the superficial tension to .933, the value for
pure water being unity. The experiments do not extend to pure alcohol, but the difference of the tensions
for mixtures of alcohol and water containing 10 and 20 per cent. water is comparatively small, the tensions
being .322 and .336 respectively.

According to the same authority (page ?? of the volume cited), one 3300th part of Castile soap will reduce
the superficial tension of water by one-fourth; one 800th part of soap by one-half. These determinations, as
well as those relating to alcohol and water, are made by the method of drops, the weight of the drops of
different liquids (from the same pipette) being regarded as proportional to their superficial tensions.

M. Athsnase Dupré has determined the superficial tensions of solutions of soap by different methods. A
statical method gives for one part of common soap in 5000 of water a superficial tension about one-half as
great as for pure water, but if the tension be measured on a jet close to the orifice, the value (for the same
solution) is sensibly identical with that of pure water. He explains these different values of the superficial
tension of the same solution as well as the great effect on the superficial tension which a very small quantity
of soap or other trifling impurity may produce, by the tendency of the soap or other substance to form a
film on the surface of the liquid. (See Annales de Chimie et de Physique, ser. 4, vol. vii, p. 409, and vol.
ix, p. 379.)
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Impermeable Films.

We have so far supposed, in treating of surfaces of discontinuity, that they
afford no obstacle to the passage of any of the component substances from
either of the homogeneous masses to the other. The case, however, must be
considered, in which there is a film of matter at the surface of discontinu-
ity which is impermeable to some or all of the components of the contiguous
masses. Such may be the case, for example, when a film of oil is spread on a
surface of water, even when the film is too thin to exhibit the properties of the
oil in mass. In such cases, if there is communication between the contiguous
masses through other parts of the system to which they belong, such that the
components in question can pass freely from one mass to the other, the impos-
sibility of a direct passage through the film may be regarded as an immaterial
circumstance, so far as states of equilibrium are concerned, and our formula
will require no change. But when there is no such indirect communication,
the potential for any component for which the film is impermeable may have
entirely different values on opposite sides of the film, and the case evidently
requires a modification of our usual method.

A single consideration will suggest the proper treatment of such cases. If
a certain component which is found on both sides of a film cannot pass from
either side to the other, the fact that the part of the component which is
on one side is the same kind of matter with the part on the other side may
be disregarded. All the general relations must hold true, which would hold
if they were really different substances. We may therefore write µ1 for the
potential of the component on one side of the film, and µ2 for the potential of
the same substance (to be treated as if it were a different substance) on the
other side; mS

1 for the excess of the quantity of the substance on the first side
of the film above the quantity which would be on that side of the dividing
surface (whether this is determined by the surface of tension or otherwise) if
the density of the substance were the same near the dividing surface as at a
distance, and mS

2 for a similar quantity relating to the other side of the film
and dividing surface. On the same principle, we may use Γ1 and Γ2 to denote
the values of mS

1 and mS
2 per unit of surface, and m1

1,m
2
2, γ

1
1, γ

2
2 to denote the

quantities of the substance and its densities in the two homogeneous masses.
With such a notation, which may be extended to cases in which the film

is impermeable to any number of components, the equations relating to the
surface and the contiguous masses will evidently have the same form as if
the substances specified by the different suffixes were all really different. The
superficial tension will be a function of µ1 and µ2, with the temperature and
the potentials for the other components, and ´Γ1,´Γ2 will be equal to its
differential coefficients with respect to µ1 and µ2. In a word, all the general
relations which have been demonstrated may be applied to this case, if we
remember always to treat the component as a different substance according as
it is found on one side or the other of the impermeable film.
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When there is free passage for the component specified by the suffixes 1

and 2, through other parts of the system (or through any flaws in the film), we
shall have in case of equilibrium µ1 “ µ2. If we wish to obtain the fundamental
equation for the surface when satisfying this condition, without reference to
other possible states of the surface, we may set a single symbol for µ1 and µ2

in the more general form of the fundamental equation. Cases may occur of an
impermeability which is not absolute, but which renders the transmission of
some of the components exceedingly slow. In such cases, it may be necessary
to distinguish at least two different fundamental equations, one relating to
a state of approximate equilibrium which may be quickly established, and
another relating to the ultimate state of complete equilibrium. The latter may
be derived from the former by such substitutions as that just indicated.

The Conditions of Internal Equilibrium for a System of
Heterogeneous Fluid Masses without neglect of the In-
fluence of the Surfaces of Discontinuity or of Gravity.

Let us now seek the complete value of the variation of the energy of a system of
heterogeneous fluid masses, in which the influence of gravity and of the surfaces
of discontinuity shall be included, and deduce from it the conditions of internal
equilibrium for such a system. In accordance with the method which has been
developed, the intrinsic energy (i.e. the part of the energy which is independent
of gravity), the entropy, and the quantities of the several components must each
be divided into two parts, one of which we regard as belonging to the surfaces
which divide approximately homogeneous masses, and the other as belonging
to these masses. The elements of intrinsic energy, entropy, etc., relating to an
element of surface Ds will be denoted by DεS,DηS,DmS

1,Dm
S
2, etc., and those

relating to an element of volume Dv, by DεV,DηV,DmV
1 ,Dm

V
2 , etc. We shall

also use DmS or ΓDs and DmV or γDv to denote the total quantities of matter
relating to the elements Ds and Dv respectively. That is,

DmS “ ΓDs “ DmS
1 ` DmS

2 ` etc. , (597)

DmV “ γDv “ DmV
1 ` DmV

2 ` etc. (598)
The part of the energy which is due to gravity must also be divided into two
parts, one of which relates to the elements DmS, and the other to the elements
DmV. The complete value of the variation of the energy of the system will be
represented by the expression

δ

ż

DεV ` δ

ż

DεS ` δ

ż

gzDmV ` δ

ż

gzDmS, (599)

in which g denotes the force of gravity, and z the height of the element above
a fixed horizontal plane.
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It will be convenient to limit ourselves at first to the consideration of re-
versible variations. This will exclude the formation of new masses or surfaces.
We may therefore regard any infinitesimal variation in the state of the system
as consisting of infinitesimal variations of the quantities relating to its several
elements, and bring the sign of variation in the preceding formula after the sign
the values given by equations (13), (497), (597), (598), we shall have for the
condition of equilibrium with respect to reversible variations of the internal
state of the system.

ż

tδDηV ´

ż

pδDv `

ż

µ1δDm
V
1 `

ż

µ2δDm
V
2 ` etc.

`

ż

tδDηS `

ż

σδDs `

ż

µ1δDm
S
1 `

ż

µ2δDm
S
2 ` etc.

`

ż

gδzDmV `

ż

gzδDmV
1 `

ż

gzδDmV
2 ` etc.

`

ż

gδzDmS `

ż

gzδDmS
1 `

ż

gzδDmS
2 ` etc. “ 0

(600)

Since equation (497) relates to surfaces of discontinuity which are initially in
equilibrium, it might seem that this condition, although always necessary for
equilibrium, may not always be sufficient. It is evident, however, from the
form of the condition that it includes the particular conditions of equilibrium
relating to every possible deformation of the system, or reversible variation in
the distribution of entropy or of the several components. It therefore includes
all the relations between the different parts of the system which are necessary
for equilibrium, so far as reversible variations are concerned. (The necessary
relations between the various quantities relating to each element of the masses
and surfaces are expressed by the fundamental equation of the mass or surface
concerned, or may be immediately derived from it. See pp. 30-35 and 181-183.)

The variations in (600) are subject to the conditions which arise from the
nature of the system and from the supposition that the changes in the system
are not such as to affect external bodies. This supposition is necessary, unless
we are to consider the variations in the state of the external bodies, and is
evidently allowable in seeking the conditions of equilibrium which relate to
the interior of the system.∗ But before we consider the equations of condition
in detail, we may divide the condition of equilibrium (600) into the three

∗ We have sometimes given a physical expression to a supposition of this kind, in problems in which the
peculiar condition of matter in the vicinity of surfaces of discontinuity was to be neglected, by regarding the
system as surrounded by a rigid and impermeable envelop. But the more exact treatment which we are now
to give the problem of equilibrium would require as to take account of the influence of the envelop on the
immediately adjacent matter. Since this involves the consideration of surfaces of discontinuity between solids
and fluids, and we wish to limit ourselves at present to the consideration of the equilibrium of fluid masses,
we shall give up the conception of an impermeable envelop, and regard the system as bounded simply by an
imaginary surface, which is not a surface of discontinuity. The variations of the system must be such as do
not deform the surface. nor affect the matter external to it.
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conditions
ż

tδDηV `

ż

tδDηS “ 0, (601)

´

ż

pδDv `

ż

σδDs `

ż

gδzDmV `

ż

gδzDmS “ 0, (602)
ż

µ1δDm
V
1 `

ż

µ1δDm
S
1 `

ż

gzδDmV
1 `

ż

gzδDmS
1

`

ż

µ2δDm
V
2 `

ż

µ2δDm
S
2 `

ż

gzδmV
2 `

ż

gzδDmS
2

` etc. “ 0.

(603)

For the variations which occur in any one of the three are evidently independent
of those which occur in the other two, and the equations of condition will relate
to one or another of these conditions separately.

The variations in condition (601) are subject to the condition that the
entropy of the whole system shall remain constant. This may be expressed by
the equation

ż

δDηV `

ż

δDηS “ 0. (604)

To satisfy the condition thus limited it is necessary and sufficient that

t “ const. (605)

throughout the whole system, which is the condition of thermal equilibrium.
The conditions of mechanical equilibrium, or those that relate to the pos-

sible deformation of the system, are contained in (602), which may also be
written

´

ż

pδDv `

ż

σδDs `

ż

gγδzDv `

ż

gΓδzDs “ 0. (606)

It will be observed that this condition has the same form as if the different fluids
were separated by heavy and elastic membranes without rigidity and having
at every point a tension uniform in all directions in the plane of the surface.
The variations in this formula, beside their necessary geometrical relations, are
subject to the conditions that the external surface of the system, and the lines
in which the surfaces of discontinuity meet it, are fixed. The formula may be
reduced by any of the usual methods, so as to give the particular conditions
of mechanical equilibrium. Perhaps the following method will lead as directly
as any to the desired result.

It will be observed the quantities affected by δ in (606) relate exclusively to
the position and size of the elements of volume and surface into which the sys-
tem is divided, and that the variations δp and δσ do not enter into the formula
either explicitly or implicitly. The equations of condition which concern this
formula also relate exclusively to the variations of the system of geometrical
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elements, and do not contain either δp or δσ. Hence, in determining whether
the first member of the formula has the value zero for every possible variation
of the system of geometrical elements, we may assign to δp and δσ any values
whatever which may simplify the solution of the problem, without inquiring
whether such values are physically possible.

Now when the system is in its initial state, the pressure p, in each of the
parts into which the system is divided by the surfaces of tension, is a function
of the co-ordinates which determine the position of the element Dv to which
the pressure relates. In the varied state of the system, the element Dv will
in general have a different position. Let the variation δp be determined solely
by the change in position of the element Dv. This may be expressed by the
equation

δp “
dp

dx
δx `

dp

dy
δy `

dp

dz
dz. (607)

in which dp

dx
,
dp

dy
,
dp

dz
are determined by the function mentioned, and δx, δy, δz

by the variation of the position of the element Dv.
Again. in the initial state of the system the tension σ, in each of the

different surfaces of discontinuity, is a function of two co-ordinates ω1, ω2, which
determine the position of the element Ds. In the varied state of the system,
this element will in general have a different position. The change of position
may be resolved into a component lying in the surface and another normal to
it. Let the variation δσ be determined solely by the first of these components
of the motion of Ds. This may be expressed by the equation

δσ “
dσ

dω1

dω1 `
dσ

dω2

δω2, (608)

in which dσ

dω1

, dσ

dω2

are determined by the function mentioned, and δω1, δω2,
by the component of the motion of Ds which lies in the plane of the surface.

With this understanding, which is also to apply to δp and δσ when contained
implicitly in any expression, we shall proceed to the reduction of the condition
(606).

With respect to any one of the volumes into which the system is divided by
the surfaces of discontinuity, we may write

ż

pδDv “ δ

ż

pDv ´

ż

δpDv.

But it is evident that
δ

ż

pDv “

ż

pδNDs,

where the second integral relates to the surfaces of discontinuity bounding the
volume considered, and δN denotes the normal component of the motion of
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an element of the surface, measured outward. Hence,
ż

pδDv “

ż

pδNDs ´

ż

δpDv.

Since this equation is true of each separate volume into which the system is
divided, we may write for the whole system

ż

pδDv “

ż

pp1 ´ p2q δNDs ´

ż

δpDv, (609)

where p1 and p2 denote the pressures on opposite sides of the element Ds, and
δN is measured toward the side specified by double accents.

Again, for each of the surfaces of discontinuity, taken separately,
ż

σδDs “ δ

ż

σDs ´

ż

δσDs,

and
δ

ż

σDs “

ż

σ pc1 ` c2q δNDs `

ż

σδTDl,

where c1 and c2 denote the principal curvatures of the surface, (positive, when
the centers are on the side opposite to that toward which δN is measured), Dl
an element of the perimeter of the surface, and δT the component of the motion
of this element which lies in the plane of the surface and is perpendicular to
the perimeter, (positive, when it extends the surface). Hence we have for the
whole system

ż

σδDs “

ż

σ pc1 ` c2q δNDs `

ż

ÿ

pσδT qDl ´

ż

δσDs, (610)

where the integration of the elements Dl extends to all the lines in which the
surfaces of discontinuity meet, and the symbol

ř

denotes a summation with
respect to the several surfaces which meet in such a line.

By equations (609) and (610), the general condition of mechanical equilib-
rium is reduced to the form

´

ż

pp1 ´ p2qδNDs `

ż

δpDv `

ż

σpc1 ` c2qδNDs

`

ż

ÿ

pσδT qDl ´

ż

δσDs `

ż

gγδzDv `

ż

gΓδzDs “ 0

Arranging and combining terms, we have
ż

pgγδz ` δpqDv `

ż

rpp2 ´ p1q δN ` σ pc1 ` c2q δN ` gΓδz ´ δσsDs

`

ż

ÿ

pσδT qDl “ 0.

(611)
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To satisfy this condition, it is evidently necessary that the coefficients of
Dv,Ds, and Dl shall vanish throughout the system.

In order that the coefficient of Dv shall vanish, it is necessary and sufficient
that in each of the masses into which the system is divided by the surfaces of
tension, p shall be a function of z alone, such that

dp

dz
“ ´gγ (612)

In order that the coefficient of Ds shall vanish in all cases, it is necessary
and sufficient that it shall vanish for normal and for tangential movements of
the surface. For normal movements we may write

δσ “ 0, and δz “ cos θδN,

where θ denotes the angle which the normal makes with a vertical line. The
first condition therefore gives the equation

p1 ´ p2 “ σ pc1 ` c2q ` gΓ cos θ, (613)
which must hold true at every point in every surface of discontinuity. The
condition with respect to tangential movements shows that in each surface of
tension σ is a function of z alone, such that

dσ

dz
“ gΓ (614)

In order that the coefficient of Dl in (611) shall vanish, we must have, for
every point in every line in which surfaces of discontinuity meet, and for any
infinitesimal displacement of the line,

ÿ

pσδT q “ 0. (615)
This condition evidently expresses the same relations between the tensions of
the surfaces meeting in the line and the directions of perpendiculars to the line
drawn in the planes of the various surfaces, which hold for the magnitudes and
directions of forces in equilibrium in a plane. In condition (603), the variations
which relate to any component are to be regarded as having the value zero in
any part of the system in which that substance is not an actual component.∗
The same is true with respect to the equations of condition, which are of the
form

ż

δDmV
1 `

ż

δDmS
1 “ 0

ż

δDmV
2 `

ż

δDmS
2 “ 0,

etc.

(616)

∗ The term actual component has been defined for homogeneous masses on page 10, and the definition
may be extended to surfaces of discontinuity. It will be observed that if a substance is an actual component
of either of the masses separated by a surface of discontinuity, it must be regarded as an actual component
for that surface, as well as when it occurs at the surface but not in either of the contiguous masses.
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(It is here supposed that the various components are independent, i.e., that
none can be formed out of others, and that the parts of the system in which
any component actually occurs are not entirely separated by parts in which it
does not occur.) To satisfy the condition (603), subject to these equations of
condition, it is necessary and sufficient that the conditions

µ1 ` gz “ M1,

µ2 ` gz “ M2,

etc.

,

/

.

/

-

(617)

( M1,M2, etc. denoting constants,) shall each hold true in those parts of the
system in which the substance specified is an actual component. We may here
add the condition of equilibrium relative to the possible absorption of any
substance (to be specified by the suffix α ) by parts of the system of which it
is not an actual component, viz., that the expression µα ` gz must not have a
less value in such parts of the system than in a contiguous part in which the
substance is an actual component.

From equation (613) with (605) and (617) we may easily obtain the differ-
ential equation of a surface of tension (in the geometrical sense of the term),
when p1, p2, and σ are known in terms of the temperature and potentials. For
c1 ` c2 and θ may be expressed in terms of the first and second differential
coefficients of z with respect to the horizontal co-ordinates, and ρ1, ρ2, σ, and Γ
in terms of the temperature and potentials. But the temperature is constant,
and for each of the potentials we may substitute — gz increased by a constant.
We thus obtain an equation in which the only variables are z and its first and
second differential coefficients with respect to the horizontal co-ordinates. But
it will rarely be necessary to use so exact a method. Within moderate differ-
ences of level, we may regard γ1, γ2, and σ as constant. We may then integrate
the equation [derived from (612)]

d pp1 ´ p2q “ g pγ2 ´ γ1q dz,

which will give
d pp1 ´ p2q “ g pγ2 ´ γ1q dz, (618)

p1 ´ p2 “ g pγ2 ´ γ1q z, (618)
where z is to be measured from the horizontal plane for which p1 “ p2. Sub-
stituting this value in (613), and neglecting the term containing Γ, we have

c1 ` c2 “
g pγ2 ´ γ1q

σ
z, (619)

where the coefficient of z is to be regarded as constant. Now the value of z
cannot be very large, in any surface of sensible dimensions, unless γ2´γ1 is very
small. We may therefore consider this equation as practically exact, unless the
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densities of the contiguous masses are very nearly equal. If we substitute for
the sum of the curvatures its value in terms of the differential coefficients of z
with respect to the horizontal rectangular co-ordinates, x and y, we have

ˆ

1 `
dz2

dy2

˙

d2z

dx2
´ 2

dz

dx

dz

dy

d2z

dxdy
`

ˆ

1 `
dz2

dx2

˙

d2z

dy2

ˆ

1 `
dz2

dx2
`

dz2

dy2

˙

3
2

“
g pγ2 ´ γ1q

σ
z. (620)

With regard to the sign of the root. in the denominator of the fraction, it
is to be observed that, if we always take the positive value of the root, the
value of the whole fraction will be positive or negative according as the greater
concavity is turned upward or downward. But we wish the value of the fraction
to be positive when the greater concavity is turned toward the mass specified
by a single accent. We should therefore take the positive or negative value of
the root according as this mass is above or below the surface.

The particular conditions of equilibrium which are given in the last para-
graph but one may be regarded in general as the conditions of chemical equi-
librium between the different parts of the system, since they relate to the sep-
arate components.∗ But such a designation is not entirely appropriate unless
the number of components is greater than one. In no case are the conditions of
mechanical equilibrium entirely independent of those which relate to temper-
ature and the potentials. For the conditions (612) and (614) may be regarded
as consequences of (605) and (617) in virtue of the necessary relations (98)
and (508). †

The mechanical conditions of equilibrium, however, have an especial im-
portance, since we may always regard them as satisfied in any liquid (and not
decidedly viscous) mass in which no sensible motions are observable. In such a
mass, when isolated, the attainment of mechanical equilibrium will take place
very soon; thermal and chemical equilibrium will follow more slowly. The
thermal equilibrium will generally require less time for its approximate attain-
ment than the chemical; but the processes by which the latter is produced will
generally cause certain inequalities of temperature until a state of complete
equilibrium is reached.

When a surface of discontinuity has more components than one which do
not occur in the contiguous masses, the adjustment of the potentials for these
components in accordance with equations (617) may take place very slowly,
or not at all, for want of sufficient mobility in the components of the surface.
But when this surface has only one component which does not occur in the
contiguous masses, and the temperature and potentials in these masses satisfy

∗ Concerning another kind of conditions of chemical equilibrium, which relate to the molecular arrange-
ment of the components, and not to their sensible distribution in space, see payes 86-92.

† Compare page 94, where a similar problem is treated without regard to the influence of the surfaces of
discontinuities:
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the conditions of equilibrium, the potential for the component peculiar to the
surface will very quickly conform to the law expressed in (617), since this
is a necessary consequence of the condition of mechanical equilibrium (614)
in connection with the conditions relating to temperature and the potentials
which we have supposed to be satisfied. The necessary distribution of the
substance peculiar to the surface will be brought about by expansions and
contractions of the surface. If the surface meets a third mass containing this
component and no other which is foreign to the masses divided by the surface,
the potential for this component in the surface will of course be determined
by that in the mass which it meets.

The particular conditions of mechanical equilibrium (612)-(615), which may
be regarded as expressing the relations which must subsist between contiguous
portions of a fluid system in a state of mechanical equilibrium, are serviceable
in determining whether a given system is or is not in such a state. But the
mechanical theorems which relate to finite parts of the system. although they
may be deduced from these conditions by integration, may generally be more
easily obtained by a suitable application of the general condition of mechanical
equilibrium (606), or by the application of ordinary mechanical principles to
the system regarded as subject to the forces indicated by this equation.

It will be observed that the conditions of equilibrium relating to temperature
and the potentials are not affected by the surfaces of discontinuity. [Compare
(228) and (234). ]∗ Since a phase cannot vary continuously without variations
of the temperature or the potentials, it follows from these conditions that
the phase at any point in a fluid system which has the same independently
variable components throughout, and is in equilibrium under the influence
of gravity, must be one of a certain number of phases which are completely
determined by the phase at any given point and the difference of level of
the two points considered. If the phases throughout the fluid system satisfy
the general condition of practical stability for phases existing in large masses
(viz., that the pressure shall be the least consistent with the temperature and
potentials), they will be entirely determined by the phase at any given point
and the differences of level (Compare page 97, where the subject is treated
without regard to the influence of the surfaces of discontinuity.)

Conditions of equilibrium relating to irreversible changes. —The conditions
of equilibrium relating to the absorption, by any part of the system of sub-
stances which are not actual components of that part have been given on page
234. Those relating to the formation of new masses and surfaces are included
in the conditions of stability relating to such changes, and are not always
distinguishable from them. They are evidently independent of the action of
gravity. We have already discussed the conditions of stability with respect to

∗ If the fluid system is divided into separate masses by solid diaphragms which are permeable to all the
components of the fluids independently, the conditions of equilibrium of the fluids relating to temperature
and the potentials will not be affected. (Compare page 29.) The propositions which follow in the above
paragraph may be extended to this case.
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the formation of new fluid masses within a homogeneous fluid and at the sur-
face when two such masses meet (see pages 204-216), as well as the condition
relating to the possibility of a change in the nature of a surface of discontinu-
ity. (See pages 189´ 192, where the surface considered is plane, but the result
may easily be extended to curved surfaces.) We shall hereafter consider, in
some of the more important cases, the conditions of stability with respect to
the formation of new masses and surfaces which are peculiar to lines in which
several surfaces of discontinuity meet, and points in which several such lines
meet.

Conditions of stability relating to the whole system. —Besides the conditions
of stability relating to very small parts of a system, which are substantially
independent of the action of gravity, and are discussed elsewhere, there are
other conditions, which relate to the whole system or to considerable parts of
it. To determine the question of the stability of a given fluid system under the
influence of gravity, when all the conditions of equilibrium are satisfied as well
as those conditions of stability which relate to small parts of the system taken
separately, we may use the method described on page 201, the demonstration
of which (pages 200, 200 ) will not require any essential modification on account
of gravity.

When the variations of temperature and of the quantities M1,M2, etc. {
see (611) } involved in the changes considered are so small that they may
be neglected, the condition of stability takes a very simple form, as we have
already seen to be the case with respect to a system uninfluenced by gravity.
(See page 203.)

We have to consider a varied state of the system in which the total entropy
and the total quantities of the various components are unchanged, and all
variations vanish at the exterior of the system, in which, moreover, the con-
ditions of equilibrium relating to temperature and the potentials are satisfied,
and the relations expressed by the fundamental equations of the masses and
surfaces are to be regarded as satisfied, although the state of the system is
not one of complete equilibrium. Let us imagine the state of the system to
vary continuously in the course of time in accordance with these conditions
and use the symbol d to denote the simultaneous changes which take place at
any instant. If we denote the total energy of the system by E, the value of dE
may be expanded like that of δE in (599) and (600), and then reduced (since
the values of t, µ1 ` gz, µ2 ` gz, etc., are uniform throughout the system, and
the total entropy and total quantities of the several components are constant)
to the form

dE “ ´

ż

pdDv `

ż

gdzDmv `

ż

σdDs `

ż

gdzDmS

“ ´

ż

pdDv `

ż

gγdzDv `

ż

σdDs `

ż

gΓdzDs,

(621)

where the integrations relate to the elements expressed by the symbol D. The
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value of p at any point in any of the various masses, and that of σ at any point
in any of the various surfaces of discontinuity are entirely determined by the
temperature and potentials at the point considered. If the variations of t and
M1, M2, etc. are to be neglected, the variations of p and σ will be determined
solely by the change in position of the point considered. Therefore, by ( 612)
and ( 614),

dp “ ´gγdz, dσ “ gΓdz;

and
dE “ ´

ż

pdDv ´

ż

dpDv `

ż

σdDs `

ż

dσDv

“ ´d

ż

pDv ` d

ż

σDs.

(622)

If we now integrate with respect to d, commencing at the given state of the
system, we obtain

∆E “ ´∆

ż

pDv ` ∆

ż

σDs, (623)

where ∆ denotes the value of a quantity in a varied state of the system dimin-
ished by its value in the given state. This is true for finite variations, and is
therefore true for infinitesimal variations without neglect of the infinitesimals
of the higher orders. The condition of stability is therefore that

∆

ż

pDv ´ ∆

ż

σDs ă 0. (624)

or that the quantity
ż

pDv ´

ż

σDs (625)

has a maximum value, the values of p and σ, for each different mass or sur-
face, being regarded as determined functions of z (In ordinary cases σ may be
regarded as constant in each surface of discontinuity, and p as a linear func-
tion of z in each different mass.) It may easily be shown (compare page 204)
that this condition is always sufficient for stability with reference to motion
of surfaces of discontinuity, even when the variations of t,M1,M2, etc. cannot
be neglected in the determination of the necessary condition of stability with
respect in such changes.

On the Possibility of the Formation of a New Surface
of Discontinuity where several Surfaces of Discontinuity
meet.

When more than three surfaces of discontinuity between homogeneous masses
meet along a line, we may conceive of a new surface being formed between
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any two of the masses which do not meet in a surface in the original state of
the system. The condition of stability with respect to the formation of such
a surface may be easily obtained by the consideration of the limit between
stability and instability, as exemplified by a system which is in equilibrium
when a very small surface of the kind is formed.

To fix our ideas, let us suppose that there are four homogeneous masses
A, B, C, and D, which meet one another in four surfaces, which we may call
A-B, B-C, C-D and D-A, these surfaces all meeting along a line L. This is
indicated in figure 11 by a section of the surfaces cutting the line L at right
angles at a point O. In an infinitesimal variation of the state of the system,
we may conceive of a small surface being formed between A and C (to be
called A-C ), so that the section of the surfaces of discontinuity by the same
plane takes the form indicated in figure 12. Let us suppose that the condition
of equilibrium (615) is satisfied both for the line L in which the surfaces of
discontinuity meet in the original state of the system, and for the two such
lines (which we may call L1 and L2 ) in the varied state of the system, at least
at the points O1 and O2 where they are cut by the plane of section. We may
therefore form a quadrilateral of which the sides αβ, βγ, γδ, δα are equal in
numerical value to the tensions of the several surfaces A-B, B-C, C-D, D-A,
and are parallel to the normals to these surfaces at the point O in the original
state of the system. In like manner, for the varied state of the system we can
construct two triangles having similar relations to the surfaces of discontinuity
meeting at O1 and O2. But the directions of the normals to the surfaces A-B
and B-C at O1 and to C-D and D-A at O2 in the varied state of the system
differ infinitely little from the directions of the corresponding normals at O in
the initial state. We may therefore regard αβ, βγ as two sides of the triangle
representing the surfaces meeting at O1, and γδ, δα as two sides of the triangle
representing the surfaces meeting at O2. Therefore, if we join αγ, this line
will represent the direction of the normal to the surface A-C, and the value of
its tension. If the tension of a surface between such masses as A and C had
been greater than that represented by αγ it is evident that the initial state of
the system of surfaces (represented in figure 11) would have been stable with
respect to the possible formation of any such surface. If the tension had been
less, the state of the system would have been at least practically unstable. To
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determine whether it is unstable in the strict sense of the term, or whether
or not it is properly to be regarded as in equilibrium, would require a more
refined analysis than we have used.∗

The result which we have obtained may be generalized as follows. When
more than three surfaces of discontinuity in a fluid system meet in equilibrium
along a line, with respect to the surfaces and masses immediately adjacent to
any point of this line, we may form a polygon of which the angular points
shall correspond in order to the different masses separated by the surfaces of
discontinuity, and the sides to these surfaces, each side being perpendicular
to the corresponding surface, and equal to its tension. With respect to the
formation of new surfaces of discontinuity in the vicinity of the point especially
considered, the system is stable, if every diagonal of the polygon is less, and
practically unstable, if any diagonal is greater, than the tension which would
belong to the surface of discontinuity between the corresponding masses. In
the limiting case, when the diagonal is exactly equal to the tension of the
corresponding surface, the system may often be determined to be unstable
by the application of the principle enunciated to an adjacent point of the
line in which the surfaces of discontinuity meet. But when, in the polygons
constructed for all points of the line, no diagonal is in any case greater than
the tension of the corresponding surface, but a certain diagonal is equal to
the tension in the polygons constructed for a finite portion of the line, farther
investigations are necessary to determine the stability of the system. For this
purpose, the method described on page 201 is evidently applicable.

A similar proposition may be enunciated in many cases with respect to a
point about which the angular space is divided into solid angles by surfaces
of discontinuity. If these surfaces are in equilibrium, we can always form a
closed solid figure without reentrant angles of which the angular points shall
correspond to the several masses, the edges to the surfaces of discontinuity, and
the sides to the lines in which these edges meet, the edges being perpendicular
to the corresponding surfaces, and equal to their tensions, and the circles

∗ We may here remark that a nearer approximative in the theory of equilibrium and stability might be
attained� by taking special account, in our general equations, of the lines in which surfaces of discontinuity
meet. These lines might be treated in a manner entirely analogous to that in which we have treated
surfaces of discontinuity. We might recognize linear densities of energy, of entropy, and of the several
substances which occur about the line, also a certain linear tension. With respect to these quantities and
the temperature and potentials, relations would hold analogous to those which have been demonstrated for
surfaces of discontinuity. (See pp. 181-183.) If the sum of the tensions of the lines L1 and L2. mentioned
above, is greater than the tension of the line L, this line will be in strictness stable (although practically
unstable) with respect to the formation of a surface between A and C, when the tension of such a surface is
a tittle less than that represented by the diagonal αγ.

The different use of the term practically unstable in different parts of this paper need not create confusion,
since the general meaning of the term is in all cases the same. A system is called practically unstable
when a very small (not necessarily indefinitely small) disturbance or variation in its condition will produce
a considerable change. In the former part of this paper, in which the influence of surfaces of discontinuity
was neglected, a system was regarded as practically unstable when such a result would be produced by
a disturbance of the same order of magnitude as the quantities relating ω surfaces of discontinuity which
were neglected. But where surfaces of discontinuity are considered, a system is not regarded as practically
unstable, unless the disturbance which will produce such a result is very small compared with the quantities
relating to surfaces of discontinuity of any appreciable magnitude.
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being perpendicular to the corresponding lines. Now if the solid angles in the
physical system are such as may be subtended by the sides and bases of a
triangular prism enclosing the vertical point, or can be derived from such by
deformation, the figure representing the tensions will have the form of two
triangular pyramids on opposite sides of the same base, and the system will
be stable or practically unstable with respect to the formation of a surface
between the masses which only meet in a point, according as the tension of
a surface between such masses is greater or less than the diagonal joining the
corresponding angular points of the solid representing the tensions. This will
easily appear on consideration of the case in which a very small surface between
the masses would be in equilibrium.

The Conditions of Stability for Fluids relating to the For-
mation of a New Phase at a Line in which Three Surfaces
of Discontinuity meet.

With regard to the formation of new phases there are particular conditions of
stability which relate to lines in which several surfaces of discontinuity meet.
We may limit ourselves to the case in which there are three such surfaces, this
being the only one of frequent occurrence, and may treat them as meeting in a
straight line. It will be convenient to commence by considering the equilibrium
of a system in which such a line is replaced by a filament of a different phase.

Let us suppose that three homogeneous fluid masses, A, B, and C are
separated by cylindrical (or plane) surfaces, A-B, B-C, C-A, which at first meet
in a straight line, each of the surface-tensions σAB, σBC,σCA being less than the
sum of the other two. Let us suppose that the system is then modified by the
introduction of a fourth fluid mass D, which is placed between A, B, and C,
and is separated from them by cylindrical surfaces D-A, D-B, D-C meeting
A-B, B-C, and C-A in straight lines. The general form of the surfaces is shown
by figure 14, in which the full lines represent a section perpendicular to all
the surfaces. The system thus modified is to be in equilibrium, as well as the
original system, the position of the surfaces A-B, B-C, C-A being unchanged.
That the last condition is consistent with equilibrium will appear from the
following mechanical considerations.
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Let vD denote the volume of the mass D per unit of length or the area of
the curvilinear triangle abc. Equilibrium is evidently possible for any values
of the surface tensions (if only σAB, σBC, σCA satisfy the condition mentioned
above, and the tensions of the three surfaces meeting at each of the edges
of D satisfy a similar condition) with any value (not too large) of vD, if the
edges of D are constrained to remain in the original surfaces A-B, B-C, and
C-A, or these surfaces extended, if necessary, without change of curvature. (In
certain cases one of the surfaces D-A, D-B, D-C may disappear and D will be
bounded by only two cylindrical surfaces.) We may therefore regard the system
as maintained in equilibrium by forces applied to the edges of D and acting
at right angles to A-B, B-C, C-A. The same forces would keep the system in
equilibrium if D were rigid. They must therefore have a zero resultant, since
the nature of the mass D is immaterial when it is rigid, and no forces external
to the system would be required to keep a corresponding part of the original
system in equilibrium. But it is evident from the points of application and
directions of these forces that they cannot have a zero resultant unless each
force is zero. We may therefore introduce a fourth mass D without disturbing
the parts which remain of the surfaces A-B, B-C, C-D.

It will be observed that all the angles at a, b, c, and d in figure 14 are
entirely determined by the six surface-tensions σAB, σBC, σCA, σDA, σDB, σDC.
[See (615).] The angles may be derived from the tensions by the following
construction, which will also indicate some important properties. If we form a
triangle aβγ (figure 15 or 16 ) having sides equal to σAB, σBC, σCA, the angles
of the triangle will be supplements of the angles at d. To fix our ideas, we
may suppose the sides of the triangle to be perpendicular to the surfaces at d.
Upon βγ we may then construct (as in figure 16) a triangle βγδ1 having sides
equal to σBC, σDC, σDB, upon γα a triangle γαδ2 having sides equal to σCA,
σDA, σDC, and upon αβ a triangle αβδ3 having sides equal to σAB, σDB, σDA.
These triangles are to be on the same sides of the lines βγ, γa, aβ, respectively,
as the triangle αβγ. The angles of these triangles will be supplements of the
angles of the surfaces of discontinuity at a, b, and c. Thus βγδ1 “ dab, and
αγδ2 “ dba. Now if δ1 and δ2 fall together in a single point δ within the triangle
aβγ, δ2 will fall in the same point, as in figure 15. In this case we shall have
βγδ ` αγδ “ αγβ, and the three angles of the curvilinear triangle adb will be
together equal to two right angles. The same will be true of the three angles
of each of the triangles bdc, cda, and hence of the three angles of the triangle
αβγ. But if δ1, δ2, δ3 do not fall together in the same point within the triangle
αβγ, it is either possible to bring these points to coincide within the triangle by
increasing some or all of the tensions σDA, σDB, σDC, or to effect the same result
by diminishing some or all of these tensions. (This will easily appear when one
of the points δ1, δ2, δ3 falls within the triangle, if we let the two tensions which
determine this point remain constant, and the third tension vary. When all
the points δ1, δ2, δ3 fall without the triangle αβγ, we may suppose the greatest
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of the tensions σDA, σDB, σDC —the two greatest, when these are equal, and all
three when they all are equal —to diminish until one of the points δ1, δ2, δ3

is brought within the triangle αβγ.) In the first case we may say that the
tensions of the new surfaces are too small to be represented by the distances of
an internal poind from the vertices of the triangle representing the tensions of
the original surfaces (or, for brevity, that they are too small to be represented
as in figure 15 ); in the second case we may say that they are too great to be
thus represented. In the first case, the sum of the angles in each of the triangles
adb, bdc, cda is less than two right angles (compare figures 14 and 16); in the
second case, each pair of the triangles αβδ3, βγδ2, γαδ2 will overlap, at least
when the tensions σDA, σDB, σDC are only a little too great to be represented
as in figure 15, and the sum of the angles of each of the triangles adb, bdc, cda
will be greater than two right angles.

Let us denote by vA, vB, vC the portions of vD which were originally occu-
pied by the masses A, B, C, respectively, by sDA, sDB, sDC, the areas of the
surfaces specified per unit of length of the mass D, replaced by the mass D per
unit of its length. In numerical value, vA, vB, vC will be equal to the areas of
the curvilinear triangles bcd, cad, abd; and sDA, sDB, sDC, sAB, sBC, sCA to the
lengths of the lines bc, ca, ab, cd, ad, bd. Also let

WS “ σDAsDA ` σDBsDB ` σDCsDC ´ σABsAB ´ σBCsBC ´ σCAsCA, (626)

and
WV “ pDvD ´ pAvA ´ pBvB ´ pCvC. (627)

The general condition of mechanical equilibrium for a system of homogeneous
masses not influenced by gravity, when the exterior of the whole system is
fixed, may be written

ÿ

pσδsq ´
ÿ

ppδvq “ 0. (628)

(See (606).) If we apply this both to the original system consisting of the
masses A, B, and C, and to the system modified by the introduction of the
mass D, and take the difference of the results, supposing the deformation of
the system to be the same in each case, we shall have

σDAδsDA ` σDBδsDB ` σDCδsDC ´ σABδsAB ´ σBCδsBC

´ σCAδsCA ´ pDδvD ` pAδvA ` pBδvB ` pCδvC “ 0.
(629)

In view of this relation, if we differentiate (626) and (627) regarding all quan-
tities except the pressures as variable, we obtain

dWS ´ dWV “ sDAdσDA ` sDBdσDB ` sDCdσDC

´ sABdσAB ´ sBCdσBC ´ sCAdσCA.
(630)

Let us now suppose the system to vary in size, remaining always similar to
itself in form, and that the tensions diminish in the same ratio as lines, while
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the pressures remain constant. Such changes will evidently not impair the
equilibrium. Since all the quantities sDA, σDA, sDB, σDB, etc. vary in the same
ratio.

sDAdσDA “
1

2
d pσDAsDAq , sDBdσDB “

1

2
d pσDBsDBq , etc. (631)

We have therefore by integration of (630)

WS ´ WV “
1

2
pσDAsDA ` σDBsDB ` σDCsDC ´ σABsAB ´ σBCsBC ´ σCAsCAq .

(632)
whence. by (626),

WS “ 2WV. (633)

The condition of stability for the system when the pressures and tensions are
regarded as constant, and the position of the surfaces A-B, B-C, C-A as fixed,
is that WS ´WV shall be a minimum under the same conditions. (See (549).)
Now for any constant values of the tensions and of pA, pB, pC, we may make
vD so small that when it varies, the system remaining in equilibrium (which
will in general require a variation of pD ), we may neglect the curvatures of the
lines da, db, dc, and regard the figure abcd as remaining similar to itself. For
the total curvature (i.e., the curvature measured in degrees) of each of the lines
ab, bc, ca may be regarded as constant, being equal to the constant difference
of the sum of the angles of one of the curvilinear triangles adb, bdc, cda and two
right angles. Therefore, when vD is very small, and the system is so deformed
that equilibrium would be preserved if pD had the proper variation, but this
pressure as well as the others and all the tensions remain constant, WS will vary
as the lines in the figure abcd, and WV as the square of these lines. Therefore,
for such deformations,

WV9WS
2.

This shows that the system cannot be stable for constant pressures and tensions
when vD is small and WV is positive, since WS ´ WV will not be a minimum.
It also shows that the system is stable when WV is negative. For, to determine
whether WS ´ WV is a minimum for constant values of the pressures and
tensions, it will evidently be sufficient to consider such varied forms of the
system as give the least value to WS ´ WV for any value of vD in connection
with the constant pressure and tensions. And it may easily be shown that such
forms of the system are those which would preserve equilibrium if pD had the
proper value.

These results will enable us to determine the most important questions
relating to the stability of a line along which three homogeneous fluids A, B,
C meet, with respect to the formation of a different fluid D. The components
of D must of course be such as are found in the surrounding bodies. We shall
regard pD and σDA, σDB, σDC as determined by that phase of D which satisfies
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the conditions of equilibrium with the other bodies relating to temperature
and the potentials. Those quantities are therefore determinable, by means of
the fundamental equations of the mass D and of the surfaces D-A, D-B, D-C,
from the temperature and potentials of the given system.

Let us first consider the case in which the tensions, thus determined. can be
represented as in figure 15, and pD has a value consistent with the equilibrium
of a small mass such as we have been considering. It appears from the preceding
discussion that when vD is sufficiently small the figure abcd may be regarded as
rectilinear, and that its angles are entirely determined by its tensions. Hence
the ratios of vA, vB, vC, vD, for sufficiently small values of vD, are determined
by the tensions alone, and for convenience in calculating these ratios, we may
suppose pA, pB, pC to be equal, which will make the figure abcd absolutely
rectilinear, and make pD equal to the other pressures, since it is supposed
that this quantity has the value necessary for equilibrium. We may obtain a
simple expression for the ratios of vA, vB, vC, vD in terms of the tensions in the
following manner. We shall write rDBCs, rDCAs, etc., to denote the areas of
triangles having sides equal to the tensions of the surfaces between the masses
specified.

vA : vB :: triangle bdc : triangle adc
:: bc sin bcd : ac sin acd

:: sin bac sin bcd : sin abc sin acd

:: sin γδβ sin δαβ : sin γδα sin δβα

:: sin γδβδβ : sin γδαδα

:: triangle γδβ : triangle γδα
:: rDBCs : rDCAs.

Hence,
vA : vB : vC : vD :: rDBCs : rDCAs : rDABs : rABCs, (634)

where
1

4

a

rpσAB ` σBC ` σCAq pσAB ` σBC ´ σCAq pσBC ` σCA ´ σABq pσCA ` σAB ´ σBCqs

may be written for rABCs, and analogous expressions for the other symbols,
the sign ? denoting the positive root of the necessarily positive expression
which follows. This proportion will hold true in any case of equilibrium, when
the tensions satisfy the condition mentioned and vD is sufficiently small. Now
if pA “ pB “ pC, pD will have the same value, and we shall have by (627)
WV “ 0, and by (633) WS “ 0. But when vD is very small, the value of WS is
entirely determined by the tensions and vD. Therefore, whenever the tensions
satisfy the condition supposed, and vD is very small (whether pA, pB, pC are
equal or unequal),

0 “ WS “ WV “ pDvD ´ pAvA ´ pBvB ´ pCvC, (635)
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which with (634) gives

pD “
rDBCspA ` rDCAspB ` rDABspC

rDBCs ` rDCAs ` rDABs
. (636)

Since this is the only value of pD for which equilibrium is possible when the
tensions satisfy the condition supposed and vD is small, it follows that when pD
has a less value, the line where the fluids A, B, C meet is stable with respect
to the formation of the fluid D. When pD has a greater value, if such a line can
exist at all, it must be at least practically unstable, i.e., if only a very small
mass of the fluid D should be formed it would tend to increase.

Let us next consider the case in which the tensions of the new surfaces
are too small to be represented as in figure 15. If the pressures and tensions
are consistent with equilibrium for any very small value of vD, the angles of
each of the curvilinear triangles adb, bdc, cda will be together less than two
right angles, and the lines ab, bc, ca will be convex toward the mass D. For
given values of the pressures and tensions, it will be easy to determine the
magnitude of vD. For the tensions will give the total curvatures (in degrees)
of the lines ab, bc, ac; and the pressures will give the radii of curvature. These
lines are that completely determined. In order that vD shall be very small it is
evidently necessary that pD shall be less than the other pressures. Yet if the
tensions of the new surfaces are only a very little too small to be represented
as in figure 15, vD may be quite small when the value of pD is only a little less
than that given by equation (636). In any case, when the tensions of the new
surfaces are too small to be represented as in figure 15, and vD is small, WV

is negative, and the equilibrium of the mass D is stable. Moreover, WS ´WV,
which represents the work necessary to form the mass D with its surfaces in
place of the other masses and surfaces, is negative.

With respect to the stability of a line in which the surfaces A-B, B-C. C-A
meet, when the tensions of the new surfaces are too small to be represented
as in figure 15, we first observe that when the pressures and tensions are such
as to make vD moderately small but not so small as to be neglected (this will
be when pD is somewhat smaller than the second member of (636), —more
or less smaller according as the tensions differ more or less from such as are
represented in figure 15 ), the equilibrium of such a line as that supposed (if it
is capable of existing at all) is at least practically unstable. For greater values
of pD (with the same values of the other pressures and the tensions) the same
will be true. For somewhat smaller values of pD, the mass of the phase D which
will be formed will be so small, that we may neglect this mass and regard the
surfaces A-B, B-C, C-A as meeting in a line in stable equilibrium. For still
smaller values of pD, we may likewise regard the surfaces A-B, B-C, C-A as
capable of meeting in stable equilibrium. It may be observed that when vD,
as determined by our equations, becomes quite insensible, the conception of
a small mass D having the properties deducible from our equations ceases to
be accurate, since the matter in the vicinity of a line where these surfaces of
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discontinuity meet must be in a peculiar state of equilibrium not recognized
by our equations.∗ But this cannot affect the validity of our conclusion with
respect to the stability of the line in question.

The case remains to be considered in which the tensions of the new surfaces
are too great to be represented as in figure 15. Let us suppose that they are
not very much too great to be thus represented. When the pressures are such
as to make vD moderately small (in case of equilibrium) but not so small that
the mass D to which it relates ceases to have the properties of matter in mass
[this will be when pD is somewhat greater than the second member of (636),
—more or less greater according as the tensions differ more or less from such
as are represented in figure 15], the line where the surfaces A-B, B-C, C-A
meet will be in stable equilibrium with respect to the formation of such a mass
as we have considered, since WS ´ WV will be positive. The same will be
true for less values of pD. For greater values of pD, the value of WS ´ WV,
which measures the stability with respect to the kind of change considered,
diminishes. It does not vanish, according to our equations, for finite values of
pD. But these equations are not to be trusted beyond the limit at which the
mass D ceases to be of sensible magnitude.

But when the tensions are such as we now suppose, we must also consider the
possible formation of a mass D within a closed figure in which the surfaces D-
A, D-B, D-C meet together (with the surfaces A-B, B-C, C-A) in two opposite
points. If such a figure is to be in equilibrium, the six tensions must be such
as can be represented by the six distances of four points in space (see pages
239,240 ), —a condition which evidently agrees with the supposition which
we have made. If we denote by wV the work gained in forming the mass D
(of such size and form as to be in equilibrium) in place of the other masses,
and by wS the work expended in forming the new surfaces in place of the old,
it may easily be shown by a method similar to that used on page 243 that
wS “

3

2
wV. From this we obtain wS ´ wV “

1

2
wV. This is evidently positive

when pD is greater than the other pressures. But it diminishes with increase
of pD, as easily appears from the equivalent expression 1

3
wS. Hence the line of

intersection of the surfaces of discontinuity A-B, B-C, C-A is stable for values
of pD greater than the other pressures (and therefore for all values of pD ) so
long as our method is to be regarded as accurate, which will be so long as the
mass D which would be in equilibrium has a sensible size.

In certain cases in which the tensions of the new surfaces are much too large
∗ See note on page 190. We may here add that the linear tension there mentioned may have a negative

value. This would be the case with respect to a line in which three surfaces of discontinuity are regarded as
meeting, but where nevertheless there really exists in stable equilibrium a filament of different phase from
the three surrounding masses. The value of the linear tension for the supposed line, would be nearly equal to
the value of WS ´WV for the actually existing filament. (For the exact value of the linear tension it would
he necessary to add the sum of the linear tensions of the three edges of the filament.) We may regard two
soap-bubbles adhering together as an example of this case. The reader will easily convince himself that in
an exact treatment of the equilibrium of such a double bubble we must recognize a certain negative tension
in the line of intersection of the three surfaces of discontinuity.
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to be represented as in figure 15, the reasoning of the two last paragraphs will
cease to be applicable. These are cases in which the six tensions cannot be
represented by the sides of a tetrahedron. It is not necessary to discuss these
cases, which are distinguished by the different shape which the mass D would
take if it should be formed, since it is evident that they can constitute no
exception to the results which we have obtained. For an increase of the values
of σDA, σDB, σDC cannot favor the formation of D, and hence cannot impair
the stability of the line considered, as deduced from our equations. Nor can
an increase of these tensions essentially affect the fact that the stability thus
demonstrated may fail to be realized when pD is considerably greater than
the other pressures, since the a priori demonstration of the stability of any
one of the surfaces A-B, B-C,C-A, taken singly, is subject to the limitation
mentioned. (See pages 213, 214.)

The Condition of Stability for Fluids relating to the For-
mation of a New Phase at a Point where the Vertices of
Four Different Masses meet.

Let four different fluid masses A,B,C,B meet about a point, so as to form
the six surfaces of discontinuity A-B, B-C, C-A, D-A, D-B, D-C, which meet
in the four lines A-B-C, B-C-D, C-D-A, D-A-B. these lines meeting in the
vertical point. Let us suppose the system stable in other respects, and consider
the conditions of stability for the vertical point with respect to the possible
formation of a different fluid mass E.

If the system can be in equilibrium when the vertical point has been replaced
by a mass E against which the four masses A,B,C,D abut, being truncated at
their vertices, it is evident that E will have four vertices, at each of which six
surfaces of discontinuity meet. (Thus at one vertex there will be the surfaces
formed by A,B,C, and E.) The tensions of each set of six surfaces (like those
of the six surfaces formed by A,B,C, and D) must therefore be such that they
can be represented by the six edges of a tetrahedron. When the tensions do
not satisfy these relations, there will be no particular condition of stability for
the point about which A,B,C, and D meet, since if a mass E should be formed,
it would distribute itself along some of the lines or surfaces which meet at the
vertical point, and it is therefore sufficient to consider the stability of these
lines and surfaces. We shall suppose that the relations mentioned are satisfied.

If we denote by WV the work gained in forming the mass E (of such size and
form as to be in equilibrium) in place of the portions of the other masses which
are suppressed, and by WS the work expended in forming the new surfaces in
place of the old. it may easily be shown by a method similar to that used on
page 243 that

WS “
3

2
WV, (637)
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whence
WS ´ WV “

1

2
WV; (638)

also, that when the volume E is small, the equilibrium of E will be stable or
unstable according as WS and WV are negative or positive.

A critical relation for the tensions is that which makes equilibrium possible
for the system of the five masses A,B,C,D,E, when all the surfaces are plane.
The ten tensions may then be represented in magnitude and direction by the
ten distances of five points in space α, β, γ, δ, ε, viz. the tension of A-B and
the direction of its normal by the line αβ, etc. The point ε will lie within the
tetrahedron formed by the other points. If we write vE for the volume of E,
and vA, vB, vC, vD for the volumes of the parts of the other masses which are
suppressed to make room for E, we have evidently

WV “ pEvE ´ pAvA ´ pBvB ´ pCvC ´ pDvD. (639)

Hence, when all the surfaces are plane. WV “ 0, and WS “ 0. Now equilibrium
is always possible for a given small value of vE with any given values of the
tensions and of pA, pB, pC, pD. When the tensions satisfy the critical relation,
WS “ 0, if pA “ pB “ pC “ pD. But when vE is small and constant, the value
of WS must be independent of pA, pB, pC, pD, since the angles of the surfaces
are determined by the tensions and their curvatures may be neglected. Hence,
WS “ 0, and WV “ 0, when the critical relation is satisfied and vE small. This
gives

pE “
vApA ` vBpB ` vCpC ` vDpD

vE
. (640)

In calculating the ratios of vA, vB, vC, vD, vE, we may suppose all the surfaces
to be plane. Then E will have the form of a tetrahedron, the vertices of
which may be called a, b, c, d (each vertex being named after the mass which is
not found there), and vA, vB, vC, cD will be the volumes of the tetrahedra into
which it may be divided by planes passing through its edges and an interior
point e. The volumes of these tetrahedra are proportional to those of the five
tetrahedra of the figure αβγδε, as will easily appear if we recollect that the
line ab is common to the surfaces C-D, D-E, E-C, and therefore perpendicular
to the surface common to the lines γδ, δε, εγ. i.e. to the surface γδε, and so
in other cases (it will be observed that γ, δ, and ε are the letters which do not
correspond to a or b); also that the surface abc is the surface D-E and therefore
perpendicular to δε, etc. Let tetr abcd, trian, abc, etc. denote the volume of
the tetrahedron or the area of the triangle specified, sinpab, bcq, sinpabc, dbcq,
sinpabc, adq, etc. the sines of the angles made by the lines and surfaces specified,
and rBCDEs. rCDEAs, etc. the volumes of tetrahedra having edges equal to
the tensions of the surfaces between the masses specified. Then, since we may
express the volume of a tetrahedron either by 1

3
of the product of one side,

an edge leading to the opposite vertex, and the sine of the angle which these
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make, or by 2

3
of the product of two sides divided by the common edge and

multiplied by the sine of the included angle,
vA : vB :: tetr bede: tetr acde
:: bc sin (bc, cde) : ac sin (ac, cde)
:: sinpba, acq sin (bc, cde) : sin (ab, bc) sin (ac, cde)
:: sinpγδε, βδεq sinpαδε, αβq : sinpγδε, αδεq sinpβδε, αβq

::
tetr γβδε tetr βαδε

trian βδε trianαδε
:
tetr γαδε

trianαδε

tetrαβδε

trian βδε

:: tetr γβδε : tetr γαδε

:: rBCDEs : rCDEAs.

Hence,
vA : vB : vc : vD :: rBCDEs : rCDEAs : rDEABs : rEABCs, (641)

and (640) may be written

pB “
rBCDEspA ` rCDEAspB ` rDEABspC ` rEABCspD

rBCDEs ` rCDEAs ` rDEABs ` rEABCs
. (642)

If the value of pE is less than this, when the tensions satisfy the critical relation,
the point where vertices of the masses A,B,C,D meet is stable with respect
to the formation of any mass of the nature of E. But if the value of pE is
greater, either the masses A,B,C,D cannot meet at a point in equilibrium, or
the equilibrium will be at least practically unstable.

When the tensions of the new surfaces are too small to satisfy the critical
relation with the other tensions, these surfaces will be convex toward E; when
their tensions are too great for that relation, the surfaces will be concave
toward E. In the first case, WS is negative, and the equilibrium of the five
masses A,B,C,D,E is stable, but the equilibrium of the four masses A,B,C,D
meeting at a point is impossible or at least practically unstable. This is subject
to the limitation that when pE is sufficiently small the mass E which will form
will be so small that it may be neglected. This will only be the case when
pE is smaller in general considerably smaller—than the second neighbor of
(642). In the second case, the equilibrium of the five masses A,B,C,D,E will
be unstable, but the equilibrium of the four masses A,B,C,D will be stable
unless vE (calculated for the case of the five masses) is of insensible magnitude.
This will only be the case when pE is greater — in general considerably greater
— than the second member of (642).

Liquid Films.

When a fluid exists in the form of a thin film between other fluids, the great
inequality of its extension in different directions will give rise to certain pecu-
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liar properties, even when its thickness is sufficient for its interior to have the
properties of matter in mass. The frequent occurrence of such films, and the
remarkable properties which they exhibit, entitle them to particular consider-
ation. To fix our ideas, we shall suppose that the film is liquid and that the
contiguous fluids are gaseous. The reader will observe our results are not de-
pendent, so far as their general character is concerned, upon this supposition.

Let us imagine the film to be divided by surfaces perpendicular to its sides
into small portions of which all the dimensions are of the same order of mag-
nitude as the thickness of the film, — such portions to be called elements of
the film, —it is evident that far less time will in general be required for the
attainment of approximate equilibrium between the different parts of any such
element and the other fluids which are immediately contiguous, than for the
attainment of equilibrium between all the different elements of the film. There
will accordingly be a time commencing shortly after the formation of the film,
in which its separate elements may be regarded as satisfying the conditions
of internal equilibrium, and of equilibrium with the contiguous gases, while
they may not satisfy all the conditions of equilibrium with each other. It
is when the changes due to this want of complete equilibrium take place so
slowly that the film appears to be at rest, except so far as it accommodates
itself to any change in the external conditions to which it is subjected, that
the characteristic properties of the film are most striking and most sharply
defined.

Let us therefore consider the properties which will belong to a film suffi-
ciently thick for its interior to have the properties of matter in mass, in virtue
of the approximate equilibrium of all its elements taken separately, when the
matter contained in each element is regarded as invariable, with the excep-
tion of certain substances which are components of the contiguous gas-masses
and have their potentials thereby determined. The occurrence of a film which
precisely satisfies these conditions may be exceptional, but the discussion of
this somewhat ideal case will enable us to understand the principal laws which
determine the behavior of liquid films in general.

Let us first consider the properties which will belong to each element of the
film under the conditions mentioned. Let us suppose the element extended,
while the temperature and the potentials which are determined by the con-
tiguous gas-masses are unchanged. If the film has no components except those
of which the potentials are maintained constant, there will be no variation
of tension in its surfaces. The same will be true when the film has only one
component of which the potential is not maintained constant, provided that
this is a component of the interior of the film and not of its surface alone. If
we regard the thickness of the film as determined by dividing surface which
make the surface-density of this component vanish, the thickness will vary in-
versely as the area of the element of the film, but no change will be produced
in the nature or the tension of its surfaces. If, however, the single component
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of which the potential is not maintained constant is confined to the surfaces of
the film, an extension of the element will generally produce a decrease in the
potential of this component, and an increase of tension. This will certainly
be true in those cases in which the component shows a tendency to distribute
itself with a uniform superficial density.

When the film has two or more components of which the potentials are not
maintained constant by the contiguous gas-masses, they will not in general
exist in the same proportion in the interior of the film as on its surfaces,
but those components which diminish the tensions will be found in greater
proportion on the surfaces. When the film is extended, there will therefore
not be enough of these substances to keep up the same volume- and surface-
densities as before, and the deficiency will cause a certain increase of tension
The value of the elasticity of the film (i.e., the infinitesimal increase of the
united tensions of its surfaces divided by the infinitesimal increase of area in
a unit of surface) may be calculated from the quantities which specify the
nature of the film, when the fundamental equations of the interior mass, of
the contiguous gas-masses, and of the two surfaces of discontinuity are known.
We may illustrate this by a simple example.

Let us suppose that the two surfaces of a plane film are entirely alike, that
the contiguous gas-masses are identical in phase, and that they determine the
potentials of all the components of the film except two. Let us call these com-
ponents S1 and S2, the latter denoting that which occurs in greater proportion
on the surface than in the interior of the film. Let us denote by γ1 and γ2 the
densities of these components in the interior of the film, by λ the thickness of
the film determined by such dividing surfaces as make the surface-density of
S1 vanish (see page 186 ), by Γ2p1q the surface-density of the other component
as determined by the same surfaces, by σ and s the tension and area of one of
these surfaces, and by E the elasticity of the films when extended under the
supposition that the total quantities of S1 and S2 in the part of the film ex-
tended are invariable, as also the temperature and the potentials of the other
components. From the definition of E we have

2dσ “ E
ds

s
, (643)

and from the conditions of the extension of the film

ds

s
“ ´

d pλγ1q

λγ1
“ ´

d
`

λγ2 ` 2Γ2p1q

˘

λγ2 ` 2Γ2p1q

. (644)

Hence we obtain

λγ1
ds

s
“ ´γ1dλ ´ λdγ1,

`

λγ2 ` 2Γ2p1q

˘ ds

s
“ ´γ2dλ ´ λdγ2 ´ 2dΓ2p1q;
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and eliminating dλ,

2γ1Γ2p1q

ds

s
“ ´λγ1dγ2 ` λγ2dγ1 ´ 2γ1dΓ2p1q. (645)

If we set
r “

γ2
γ1
, (646)

we have
dr “

γ1dγ2 ´ γ2dγ1
γ12

, (647)

and
2Γ2p1q

ds

s
“ ´λγ1dr ´ 2dΓ2p1q. (648)

With this equation we may eliminate ds from (643). We may also eliminate
dσ by the necessary relation (see (514))

dσ “ ´Γ2p1qdµ2.

This will give
4Γ2

2p1qdµ2 “ E
`

λγ1dr ` 2dΓ2p1q

˘

, (649)
or

4Γ2
2p1q

E
“ λγ1

dr

dµ2

` 2
dΓ2p1q

dµ2

, (650)

where the differential coefficients are to be determined on the conditions that
the temperature and all the potentials except µ1 and µ2 are constant, and
that the pressure in the interior of the film shall remain equal to that in the
contiguous gas-masses. The latter condition may be expressed by the equation

pγ1 ´ γ1
1q dµ1 ` pγ2 ´ γ1

2q dµ2 “ 0, (651)

in which γ1
1 and γ1

2 denote the densities of S1 and S2 in the contiguous gas-
masses. [See (98),] When the tension of the surfaces of the film and the pres-
sures in its interior and in the contiguous gas masses are known in terms of the
temperature and potentials, equation (650) will give the value of E in terms
of the same variables together with λ.

If we write G1 and G2 for the total quantities of S1 and S2 per unit of area
of the film, we have

G1 “ λγ1, (652)

G2 “ λγ2 ` 2Γ2p1q. (653)
Therefore,

G2 “ G1r ` 2Γ2p1q,
ˆ

dG2

dµ2

˙

G1

“ λγ1
dr

dµ2

` 2
dΓ2p1q

dµ2

,
(654)

253



where the differential coefficients in the second member are to be determined
as in (650), and that in the first member with the additional condition that
G1 is constant. Therefore,

4Γ2
2p1q

E
“

ˆ

dG2

dµ2

˙

G1

,

and
E “ 4Γ2

2p1q

ˆ

dµ2

dG2

˙

G1

, (655)

the last differential coefficient being determined by the same conditions as
that in the preceding equation. It will be observed that the value of E will be
positive in any ordinary case.

These equations give the elasticity of any element of the film when the
temperature and the potentials for the substances which are found in the
contiguous gas-masses are regarded as constant, and the potentials for the
other components, µ1 and µ2, have had time to equalize themselves throughout
the element considered. The increase of tension immediately after a rapid
extension will be greater than that given by these equations.

The existence of this elasticity, which has thus been established from a
priori considerations, is clearly indicated by the phenomena which liquid films
present. Yet it is not to be demonstrated simply by comparing the tensions of
films of different thickness, even when they are made from the same liquid, for
difference of thickness does not necessarily involve any difference of tension.
When the phases within the films as well as without are the same, and the
surfaces of the films are also the same, there will be no difference of tension.
Nor will the tension of the same film be altered, if a part of the interior drains
away in the course of time, without affecting the surfaces. In case the thickness
of the film is reduced by evaporation, the tension may be either increased or
diminished. (The evaporation of the substance S1, in the case we have just
considered, would diminish the tension.) Yet it may easily be shown that
extension increases the tension of a film and contraction diminishes it. When
a plane film is held vertically, the tension of the upper portions must evidently
be greater than that of the lower. The tensions in every part of the film may
be reduced to equality by turning it into a horizontal position. By restoring
the original position we may restore the original tensions, or nearly so. It
is evident that the same element of the film is capable of supporting very
unequal tensions. Nor can this be always attributed to viscosity of the film.
For in many cases, if we hold the film nearly horizontal and elevate first one
side and then another, the lighter portions of the film will dart from one side
to the other, so as to show a very striking mobility in the film. The differences
of tension which cause these rapid movements are only a very small fraction
of the difference of tension in the upper and lower portions of the film when
held vertically.
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If we account for the power of an element of the film to support an increase
of tension by viscosity, it will be necessary to suppose that the viscosity offers
a resistance to a deformation of the film in which its surface is enlarged and
its thickness diminished, which is enormously great in comparison with the
resistance to a deformation in which the film is extended in the direction of
one tangent and contracted in the direction of another, while its thickness and
the areas of its surfaces remain constant. This is not to be readily admitted as
a physical explanation, although to a certain extent the phenomena resemble
those which would be caused by such a singular viscosity. (See page 225. )
The only natural explanation of the phenomena is that the extension of an
element of the film, which is the immediate result of an increase of external
force applied to its perimeter, causes an increase of its tension, by which it is
brought into true equilibrium with the external forces.

The phenomena to which we have referred are such as are apparent to a
very cursory observation. In the following experiment, which is described by
M. Platean,∗ an increased tension is manifested in a film while contracting
after a previous extension. The warmth of a finger brought near to a bubble of
soap-water with glycerine, which is thin enough to show colors, causes a spot
to appear indicating a diminution of thickness. When the finger is removed,
the spot returns to its original color. This indicates a contraction, which would
be resisted by any viscosity of the film, and can only be due to an excess of
tension in the portion stretched, on the return of its original temperature.

We have so far supposed that the film is thick enough for its interior to have
the properties of matter in mass. Its properties are then entirely determined
by those of the three phases and the two surfaces of discontinuity. From these
we can also determine, in part at least, the properties of a film at the limit
at which the interior ceases to have the properties of matter in mass. The
elasticity of the film, which increases with its thinness, cannot of course vanish
at that limit, so that the film cannot become unstable with respect to extension
and contraction of its elements immediately after passing that limit.

Yet a certain kind of instability will probably arise, which we may here
notice, although it relates to changes in which the condition of the invariabil-
ity of the quantities of certain components in an element of the film is not
satisfied. With respect to variations in the distribution of its components, a
film will in general be stable, when its interior has the properties of matter
in mass, with the single exception of variations affecting its thickness without
any change of phase or of the nature of the surfaces. With respect to this
kind of change, which may be brought about by a current in the interior of
the film, the equilibrium is neutral. But when the interior ceases to have the
properties of matter in mass, it is to be supposed that the equilibrium will
generally become unstable in this respect. For it is not likely that the neutral
equilibrium will be unaffected by such a change of circumstances, and since

∗ “Statique expérimental et théorique des liquides sonmis aux seules forces moléculaires”, vol. i, p. 294.
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the film certainly becomes unstable when it is sufficiently reduced in thickness,
it is most natural to suppose that the first effect of diminishing the thickness
will be in the direction of instability rather than in that of stability. (We are
here considering liquid films between gaseous masses. In certain other cases,
the opposite supposition might be more natural, as in respect to a film of
water between mercury and air, which would certainly become stable when
sufficiently reduced in thickness.)

Let us now return to our former suppositions—that the film is thick enough
for the interior to have the properties of matter in mass, and that the matter
in each element is invariable, except with respect to those substances which
have their potentials determined by the contiguous gas-masses—and consider
what conditions are necessary for equilibrium in such a case.

In consequence of the supposed equilibrium of its several elements, such a
film may be treated as a simple surface of discontinuity between the contiguous
gas-masses (which may be similar or different), whenever its radius of curvature
is very large in comparison with its thickness, — a condition which we shall
always suppose to be fulfilled. With respect to the film considered in this light,
the mechanical conditions of equilibrium will always be satisfied, or very nearly
so, as soon as a state of approximate rest is attained, except in those cases
in which the film exhibits a decided viscosity. That is, the relations (613),
(614), (615) will hold true, when by σ we understand the tension of the film
regarded as a simple surface of discontinuity (this is equivalent to the sum of
the tensions of the two surfaces of the film), and by Γ its mass per unit of
area diminished by the mass of gas which would occupy the same space if the
film should be suppressed and the gases should meet at its surface of tension.
This surface of tension of the film will evidently divide the distance between
the surfaces of tension for the two surfaces of the film taken separately, in
the inverse ratio of their tensions. For practical purposes, we may regard Γ
simply as the mass of the film per unit of area. It will be observed that the
terms containing Γ in (613) and (614) are not to be neglected in our present
application of these equations.

But the mechanical conditions of equilibrium for the film regarded as an
approximately homogeneous mass in the form of a thin sheet bounded by two
surfaces of discontinuity are not necessarily satisfied when the film is in a
state of apparent rest. In fact, these conditions cannot be satisfied (in any
place where the force of gravity has an appreciable intensity) unless the film is
horizontal. For the pressure in the interior of the film cannot satisfy simultane-
ously condition (612), which requires it to vary rapidly with the height z, and
condition (613) applied separately to the different surfaces, which makes it a
certain mean between the pressures in the adjacent gas-masses. Nor can these
conditions be deduced from the general condition of mechanical equilibrium
(606) or (611), without supposing that the interior of the film is free to move
independently of the surfaces, which is contrary to what we have supposed.
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Moreover, the potentials of the various components of the film will not in
general satisfy conditions (617), and cannot (when the temperature is uniform)
unless the film is horizontal. For if these conditions were satisfied, equation
(612) would follow as a consequence. (See page 234.)

We may here remark that such a film as we are considering cannot form
any exception to the principle indicated on page 235, —that when a surface
of discontinuity which satisfies the conditions of mechanical equilibrium has
only one component which is not found in the contiguous masses, and these
masses satisfy all the conditions of equilibrium, the potential for the component
mentioned must satisfy the law expressed in (617), as a consequence of the
condition of mechanical equilibrium (614). Therefore, as we have just seen that
it is impossible that all the potentials in a liquid film which is not horizontal
should conform to (617) when the temperature is uniform, it follows that if
a liquid film exhibits any persistence which is not due to viscosity, or to a
horizontal position, or to differences of temperature, it must have more than
one component of which the potential is not determined by the contiguous
gas-masses in accordance with (617).

The difficulties of the quantitative experimental verification of the proper-
ties which have been described would be very great, even in cases in which
the conditions we have imagined were entirely fulfilled. Yet the general effect
of any divergence from these conditions will be easily perceived, and when
allowance is made for such divergence, the general behavior of liquid films will
be seen to agree with the requirements of theory.

The formation of a liquid film takes place most symmetrically when a bubble
of air rises to the top of a mass of the liquid. The motion of the liquid, as
it is displaced by the bubble, is evidently such as to stretch the two surfaces
in which the liquid meets the air, where these surfaces approach one another.
This will cause an increase of tension, which will tend to restrain the extension
of the surfaces. The extent to which this effect is produced will vary with
the nature of the liquid. Let us suppose that the case is one in which the
liquid contains one or more components which, although constituting but a
very small part of its mass, greatly reduce its tension. Such components will
exist in excess on the surfaces of the liquid. In this case the restraint upon the
extension of the surfaces will be considerable, and as the bubble of air rises
above the general level of the liquid, the motion of the latter will consist largely
of a running out from between the two surfaces. But this running out of the
liquid will be greatly retarded by its viscosity as soon as it is reduced to the
thickness of a film, and the effect of the extension of the surfaces in increasing
their tension will become greater and more permanent as the quantity of liquid
diminishes which is available for supplying the substances which go to form
the increased surfaces.

We may form a rough estimate of the amount of motion which is possible
for the interior of a liquid film, relatively to its exterior, by calculating the
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descent of water between parallel vertical planes at which the motion of the
water is reduced to zero. If we use the coefficient of viscosity as determined
by Helmholtz and Piotrowski,∗ we obtain

V “ 581D2, (656)

where V denotes the mean velocity of the water (i.e., that velocity which, if
it were uniform throughout the whole space between the fixed planes, would
give the same discharge of water as the actual variable velocity) expressed in
millimeters per second, and D denotes the distance in millimeters between the
fixed planes, which is supposed to be very small in proportion to their other
dimensions. This is for the temperature of 24.5˝C. For the same temperature,
the experiments of Poiseuille† give

V “ 337D2

for the descent of water in long capillary tubes, which is equivalent to

V “ 899D2 (657)

for descent between parallel planes. The numerical coefficient in this equation
differs considerably from that in (656), which is derived from experiments of
an entirely different nature, but we may at least conclude that in a film of a
liquid which has a viscosity and specific gravity not very different from those of
water at the temperature mentioned the mean velocity of the interior relatively
to the surfaces will not probably exceed 1000D2. This is a velocity of .1mm

per second for a thickness of .01mm, .06mm per minute for a thickness of .001
(which corresponds to the red of the fifth order in a film of water), and .036mm

per hour for a thickness of .0001mm (which corresponds to the white of the first
order). Such an internal current is evidently consistent with great persistence
of the film, especially in those cases in which the film can exist in a state of the
greatest tenuity. On the other hand, the above equations give so large a value
of V for thicknesses of 1mm or .1mm, that the film can evidently be formed
without carrying up any great weight of liquid, and any such thicknesses as
these can have only a momentary existence.

A little consideration will show that the phenomenon is essentially of the
same nature when films are formed in any other way, as by dipping a ring
or the mouth of a cup in the liquid and then withdrawing it. When the
film is formed in the mouth of a pipe, it may sometimes be extended so as
to form a large bubble. Since the elasticity (i.e., the increase of the tension
with extension) is greater in the thinner parts, the thicker parts will be most

∗ sitzungsberichte der Wiener Akademie (mathemat.-naturwiss. Classe), B. xl, S.607. The calculation
of formula (656) and that of the factor (8

3
) applied to the formula of Poiseuille, to adapt it to a current

between plane surfaces, have been made by means of the general equations of the motion of a viscous liquid
as given in the memoir referred to.

† Ibid., p. 653; or Mémoires des Savants Étrangers, vol. ix, p. 532.
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extended, and the effect of this process (so far as it is not modified by gravity)
will be to diminish the ratio of the greatest to the least thickness of the film.
During this extension, as well as at other times, the increased elasticity due to
imperfect communication of heat, etc., will serve to protect the bubble from
fracture by shocks received from the air or the pipe. If the bubble is now laid
upon a suitable support, the condition (613) will be realized almost instantly.
The bubble will then tend toward conformity with condition (614), the lighter
portions rising to the top, more or less slowly, according to the viscosity of the
film. The resulting difference of thickness between the upper and the lower
parts of the bubble is due partly to the greater tension to which the upper
parts are subject, and partly to a difference in the matter of which they are
composed. When the film has only two components of which the potentials
are not determined by the contiguous atmosphere, the laws which govern the
arrangement of the elements of the film may be very simply expressed. If we
call these components S1 and S2, the latter denoting (as on page 251 ) that
which exists in excess at the surface, one element of the film will tend coward
the same level with another, or a higher, or a lower level, according as the
quantity of S2 bears the same ratio to the quantity of S1 in the first element
as in the second, or a greater, or a less ratio.

When a film, however formed, satisfies both the conditions (613) and (614),
its thickness being sufficient for its interior to have the properties of matter
in mass, the interior will still be subject to the slow current which we have
already described, if it is truly fluid, however great its viscosity may be. It
seems probable, however, that this process is often totally arrested by a certain
gelatinous consistency of the mass in question, in virtue of which, although
practically fluid in its behavior with reference to ordinary stresses, it may have
the properties of a solid with respect to such very small stresses as those which
are caused by gravity in the interior of a very thin film which satisfies the
conditions (613) and (614).

However this may be, there is another cause which is often more potent in
producing changes in a film, when the conditions just mentioned are approx-
imately satisfied, than the action of gravity on its interior. This will be seen
if we turn our attention to the edge where the film is terminated. At such an
edge we generally find a liquid mass, continuous in phase with the interior of
the film, which is bounded by concave surfaces, and in which the pressure is
therefore less than in the interior of the film. This liquid mass therefore exerts
a strong suction upon the interior of the film, by which its thickness is rapidly
reduced. This effect is best seen when a film which has been formed in a ring
is held in a vertical position. Unless the film is very viscous, its diminished
thickness near the edge causes a rapid upward current on each side, while the
central portion slowly descends. Also at the bottom of the film, where the
edge is nearly horizontal, portions which have become thinned escape from
their position of unstable equilibrium beneath heavier portions, and pass up-
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wards, traversing the central portion of the film until they find a position of
stable equilibrium. By these processes, the whole film is rapidly reduced in
thickness.

The energy of the suction which produces these effects may be inferred from
the following considerations. The pressure in the slender liquid mass which
encircles the film is of course variable, being greater in the lower portions than
in the upper, but it is everywhere less than the pressure of the atmosphere.
Let us take a point where the pressure is less than that of the atmosphere by
an amount represented by a column of the liquid one centimeter in height. (It
is probable that much greater differences of pressure occur.) At a point near
by in the interior of the film the pressure is that of the atmosphere. Now if the
difference of pressure of these two points were distributed uniformly through
the space of one centimeter, the intensity of its action would be exactly equal
to that of gravity. But since the change of pressure must take place very
suddenly (in a small fraction of a millimeter), its effect in producing a current
in a limited space must be enormously great compared with that of gravity.

Since the process just described is connected with the descent of the liquid
in the mass encircling the film, we may regard it as another example of the
downward tendency of the interior of the film. There is a third way in which
this descent may take place, when the principal component of the interior
is volatile, viz., through the air. Thus, in the case of a film of soap-water,
if we suppose the atmosphere to be of such humidity that the potential for
water at a level mid-way between the top and bottom of the film has the
same value in the atmosphere as in the film, it may easily be shown that
evaporation will take place in the upper portions and condensation in the
lower. These processes, if the atmosphere were otherwise undisturbed, would
occasion currents of diffusion and other currents, the general effect of which
would be to carry the moisture downward. Such a precise adjustment would
be hardly attainable, and the processes described would not be so rapid as to
have a practical importance.

But when the potential for water in the atmosphere differs considerably
from that in the film, as in the case of a film of soap-water in a dry atmo-
sphere, or a film of soap-water with glycerine in a moist atmosphere, the effect
of evaporation or condensation is not to be neglected. In the first case, the
diminution of the thickness of the film will be accelerated, in the second, re-
tarded. In the case of the film containing glycerine, it should be observed that
the water condensed cannot in all respects replace the fluid carried down by
the internal current but that the two processes together will tend to wash out
the glycerine from the film.

But when a component which greatly diminishes the tension of the film,
although forming but a small fraction of its mass, (therefore existing in excess
at the surface,) is volatile, the effect of evaporation and condensation may be
considerable, even when the mean value of the potential for that component
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is the same in the film as in the surrounding atmosphere. To illustrate this,
let us take the simple case of two components S1 and S2, as before. (See page
251.) It appears from equation (508) that the potentials must vary in the film
with the height z, since the tension does, and from (98) that these variations
must (very nearly) satisfy the relation

γ1
dµ1

dz
` γ2

dµ2

dz
“ 0 (658)

γ1 and γ2 denoting the densities of S1 and S2 in the interior of the film. The
variation of the potential of S2 as we pass from one level to another is therefore
as much more rapid than that of S1, as its density in the interior of the film is
less. If then the resistances restraining the evaporation, transmission through
the atmosphere, and condensation of the two substances are the same, these
processes will go on much more rapidly with respect to S2. It will be observed
that the values of dµ1

dz
and dµ2

dz
will have opposite signs, the tendency of

S1 being to pass down through the atmosphere, and that of S2 to pass up.
Moreover, it may easily be shown that the evaporation or condensation of S2

will produce a very much greater effect than the evaporation or condensation
of the same quantity of S1. These effects are really of the same kind. For if
condensation of S2 takes place at the top of the film, it will cause a diminution
of tension, and thus occasion an extension of this part of the film, by which
its thickness will be reduced, as it would be by evaporation of S1. We may
infer that it is a general condition of the persistence of liquid films, that the
substance which causes the diminution of tension in the lower parts of the film
must not be volatile.

But apart from any action of the atmosphere, we have seen that a film which
is truly fluid in its interior is in general subject to a continual diminution of
thickness by the internal currents due to gravity and the suction at its edge.
Sooner or later, the interior will somewhere cease to have the properties of
matter in mass. The film will then probably become unstable with respect to
a flux of the interior (see page 255 ), the thinnest parts tending to become
still more thin (apart from any external cause) very much as if there were an
attraction between the surfaces of the film, insensible at greater distances, but
becoming sensible when the thickness of the film is sufficiently reduced. We
should expect this to determine the rupture of the film, and such is doubtless
the case with most liquids. In a film of soap-water, however, the rupture
does not take place, and the processes which go on can be watched. It is
apparent even to a very superficial observation that a film of which the tint
is approaching the black exhibits a remarkable instability. The continuous
change of tint is interrupted by the breaking out and rapid extension of black
spots. That in the formation of these black spots a separation of different
substances takes place, and not simply an extension of a part of the film, is
shown by the fact that the film is made thicker at the edge of these spots.
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This is very distinctly seen in a plane vertical film, when a single black spot
breaks out and spreads rapidly over a considerable area which was before of
a nearly uniform tint approaching the black. The edge of the black spot as it
spreads is marked as it were by a string of bright beads, which unite together on
touching, and thus becoming larger, glide down across the bands of color below.
Under favorable circumstances, there is often quite a shower of these bright
spots. They are evidently small spots very much thicker—apparently many
times thicker—than the part of the film out of which they are formed. Now if
the formation of the black spots were due to a simple extension of the film, it
is evident that no such appearance would be presented. The thickening of the
edge of the film cannot be accounted for by contraction. For an extension of the
upper portion of the film and contraction of the lower and thicker portion, with
descent of the intervening portions, would be far less resisted by viscosity, and
far more favored by gravity than such extensions and contractions as would
produce the appearances described. But the rapid formation of a thin spot by
an internal current would cause an accumulation at the edge of the spot of the
material forming the interior of the film, and necessitate a thickening of the
film in that place.

That which is most difficult to account for in the formation of the black
spots is the arrest of the process by which the film grows thinner. It seems most
natural to account for this, if possible, by passive resistance to motion due to a
very viscous or gelatinous condition of the film. For it does not seem likely that
the film, after becoming unstable by the flux of matter from its interior, would
become stable (without the support of such resistance) by a continuance of the
same process. On the other hand, gelatinous properties are very marked in
soap-water which contains somewhat more soap than is best for the formation
of films, and it is entirely natural that, even when such properties are wanting
in the interior of a mass or thick film of a liquid, they may still exist in the
immediate vicinity of the surface (where we know that the soap or some of
its components exists in excess), or throughout a film which is so thin that
the interior has ceased to have the properties of matter in mass.∗ But these
considerations do not amount to any a priori probability of an arrest of the
tendency toward an internal current between adjacent elements of a black spot
which may differ slightly in thickness, in time to prevent rupture of the film.
For, in a thick film, the increase of the tension with the extension, which is
necessary for its stability with respect to extension, is connected with an excess
of the soap (or of some of its components) at the surface as compared with
the interior of the film. With respect to the black spots, although the interior
has ceased to have the properties of matter in mass, and any quantitative
determinations derived from the surfaces of a mass of the liquid will not be

∗ The experiments of M. Plateau (chapter VII of the work already cited) show that this is the esse to a
very remarkable degree with respect to a solution of saponine. With respect to soap-water, however, they do
not indicate any greater superficial viscosity than belongs to pure water. But the resistance to an internal
current, such as we are considering, is not necessarily measured by the resistance to such motions as those
of the experiments referred to.
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applicable, it is natural to account for the stability with reference to extension
by supposing that the same general difference of composition still exists. If
therefore we account for the arrest of internal currents by the increasing density
of soap or some of its components in the interior of the film, we must still
suppose that the characteristic difference of composition in the interior and
surface of the film has not been obliterated.

The preceding discussion relates to liquid films between masses of gas. Sim-
ilar considerations will apply to liquid films between other liquids or between
a liquid and a gas, and to films of gas between masses of liquid. The latter nay
be formed by gently depositing a liquid drop upon the surface of a mass of the
same or a different liquid. This may be done (with suitable liquids) so that
the continuity of the air separating the liquid drop and mass is not broken,
but a film of air is formed, which, if the liquids are similar, is a counterpart of
the liquid film which is formed by a bubble of air rising to the top of a mass
of the liquid. (If the bubble has the same volume as the drop, the films will
have precisely the same form, as well as the rest of the surfaces which bound
the bubble and the drop.) Sometimes, when the weight and momentum of
the drop carry it through the surface of the mass on which it falls, it appears
surrounded by a complete spherical film of air, which is the counterpart on a
small scale of a soap-bubble hovering in air.∗ Since, however, the substance
to which the necessary differences of tension in the film are mainly due is a
component of the liquid masses on each side of the air film, the necessary dif-
ferences of the potential of this substance cannot be permanently maintained,
and these films have little persistence compared with films of soap-water in
air. In this respect, the case of these air-films is analogous to that of liquid
films in an atmosphere containing substances by which their tension is greatly
reduced. Compare pages 260, 261.

Surfaces of Discontinuity between Solids and Fluids.

We have hitherto treated of surfaces of discontinuity on the supposition that
the contiguous masses are fluid. This is by far the most simple case for any
rigorous treatment, since the masses are necessarily isotropic both in nature
and in their state of strain. In this case, moreover, the mobility of the masses
allows a satisfactory experimental verification of the mechanical conditions of
equilibrium. On the other hand, the rigidity of solids is in general so great, that
any tendency of the surfaces of discontinuity to variation in area or form may
be neglected in comparison with the forces which are produced in the interior
of the solids by any sensible strains, so that it is not generally necessary to
take account of the surfaces of discontinuity in determining the state of strain

∗ These spherical air-films are easily formed in soap-water. They are distinguishable from ordinary
air-bubbles by their general behavior and by their appearance. The two concentric spherical surfaces are
distinctly seen, the diameter of one appearing to be about three-quarters as large as that of the other. This
is of course an optical illusion, depending upon the index of retraction of the liquid.
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of solid masses. But we must take account of the nature of the surfaces of
discontinuity between solids and fluids with reference to the tendency toward
solidification or dissolution at such surfaces, and also with reference to the
tendencies of different fluids to spread over the surfaces of solids.

Let us therefore consider a surface of discontinuity between a fluid and a
solid, the latter being either isotropic or of a continuous crystalline structure,
and subject to any kind of stress compatible with a state of mechanical equi-
librium with the fluid. We shall not exclude the case in which substances
foreign to the contiguous masses are present in small quantities at the surface
of discontinuity, but we shall suppose that the nature of this surface (i.e., of
the non-homogeneous film between the approximately homogeneous masses) is
entirely determined by the nature and state of the masses which it separates,
and the quantities of the foreign substances which may be present. The notions
of the dividing surface, and of the superficial densities of energy, entropy, and
the several components, which we have used with respect to surfaces of discon-
tinuity between fluids (see pages 172 and 176), will evidently apply without
modification to the present case. We shall use the suffix, with reference to the
substance of the solid, and shall suppose the dividing surface to be determined
so as to make the superficial density of this substance vanish. The superficial
densities of energy, of entropy, and of the other component substances may
then be denoted by our usual symbols (see page 187),

εSp1q, ηSp1q, Γ2p1q, Γ3p1q, etc.
Let the quantity σ be defined by the equation

σ “ εSp1q ´ tηSp1q ´ µ2Γ2p1q ´ µ3Γ3p1q ´ etc. , (659)
in which t denotes the temperature, and µ2, µ3, etc. the potentials for the
substances specified at the surface of discontinuity.

As in the case of two fluid masses (see page 209), we may regard σ as
expressing the work spent in forming a unit of the surface of discontinuity
— under certain conditions, which we need not here specify —but it cannot
properly be regarded as expressing the tension of the surface. The latter
quantity depends upon the work spent in stretching the surface, while the
quantity σ depends upon the work spent in forming the surface. With respect
to perfectly fluid masses, these processes are not distinguishable, unless the
surface of discontinuity has components which are not found in the contiguous
masses, and even in this case (since the surface must be supposed to be formed
out of matter supplied at the same potentials which belong to the matter in the
surface) the work spent in increasing the surface infinitesimally by stretching
is identical with that which must be spent in forming an equal infinitesimal
amount of new surface. But when one of the masses is solid, and its states
of strain are to be distinguished. there is no such equivalence between the
stretching of the surface and the forming of new surface.∗

∗ This will appear more distinctly if we consider a particular case. Let us consider a thin plane sheet
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With these preliminary notions, we now proceed to discuss the condition
of equilibrium which relates to the dissolving of a solid at the surface where
it meets a fluid, when the thermal and mechanical conditions of equilibrium
are satisfied. It will be necessary for us to consider the case of isotropic and of
crystallized bodies separately, since in the former the value of σ is independent
of the direction of the surface, except so far as it may be influenced by the
state of strain of the solid, while in the latter the value of σ varies greatly
with the direction of the surface with respect to the axes of crystallization,
and in such a manner as to have a large number of sharply defined minima.∗
This may be inferred from the phenomena which crystalline bodies present, as
will appear more distinctly in the following discussion. Accordingly, while a
variation in the direction of an element of the surface may be neglected (with
respect to its effect on the value of σ ) in the case of isotropic solids, it is quite
otherwise with crystals. Also, while the surfaces of equilibrium between fluids
and soluble isotropic solids are without discontinuities of direction, being in
general curved, a crystal in a state of equilibrium with a fluid in which it can
dissolve is bounded in general by a broken surface consisting of sensibly plane
portions.

For isotropic solids, the conditions of equilibrium may be deduced as fol-
lows. If we suppose that the solid is unchanged, except that an infinitesimal
portion is dissolved at the surface where it meets the fluid, and that the fluid
is considerable in quantity and remains homogeneous, the increment of energy
in the vicinity of the surface will be represented by the expression

ż

“

ε1
V ´ ε2

V ` pc1 ` c2q εSp1q

‰

δNDs

where Ds denotes an element of the surface, δN the variation in its position
(measured normally, and regarded as negative when the solid is dissolved), c1
and c2 its principal curvatures (positive when their centers lie on the same side
as the solid), εSp1q the surface-density of energy, ε1

V and ε2
V the volume-densities

of a crystal in a vacuum (which may be regarded as a limiting case of a very attenuated fluid), and let
us suppose that the two surfaces of the sheet are alike. By applying the proper forces to the edges of the
sheet, we can make all stress vanish in its interior. The tension of the two surfaces are in equilibrium with
these fores, and are measured by them. But the tensions of the surfaces, thus determined, may evidently
have different values in different directions, and are entirely different from the quantity which we denote by
σ, which represents the work required to form a unit of the surface by any reversible process, and is not
connected with any idea of direction.

In certain eases, however, it appears probable that the values of σ and of the superficial tension will
not greatly differ. This is especially true of the numerous bodies which, although generally (and for many
purposes properly) regarded as solids, are really very viscous fluids. Even when a body exhibits no fluid
properties at its actual temperature, if its surface has been formed at a higher temperature, at which the
body was fluid, and the change from the fluid to the solid state has been by insensible gradations, we may
suppose that the value of σ coincided with the superficial tension until the body was decidedly solid, and
that they will only differ so far as they may be differently affected by subsequent variations of temperature
and of the stresses applied to the solid. Moreover, when an amorphous solid is in a state of equilibrium with
a solvent, although it may have no fluid properties in its interior, it seems not improbable that the particles
at its surface, which have a greater degree of mobility, may so arrange themselves that the value of σ will
coincide with the superficial tension, as in the case of fluids.

∗ The differential coefficients of σ with respect to the direction-cosines of the surface appear to be dis-
continuous functions of the latter quantities.
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of energy in the solid and fluid respectively, and the sign of integration relates
to the elements Ds. In like manner, the increments of entropy and of the
quantities of the several components in the vicinity of the surface will be

ż

“

η1
V ´ η2

V ` pc1 ` c2q ηSp1q

‰

δNDs,
ż

rγ1
1 ´ γ2

1s δNDs,
ż

“

´γ2
2 ` pc1 ` c2qΓ2p1q

‰

δNDs,

etc.

The entropy and the matter of different kinds represented by these expressions
we may suppose to be derived from the fluid mass. These expressions, there-
fore, with a change of sign, will represent the increments of entropy and of the
quantities of the components in the whole space occupied by the fluid except
that which is immediately contiguous to the solid. Since this space may be
regarded as constant, the increment of energy in this space may be obtained
(according to equation (12)) by multiplying the above expression relating to
entropy by ´t, and those relating to the components by ´µ2

1,´µ2, etc., ∗ and
taking the sum. If to this we add the above expression for the increment of en-
ergy near the surface, we obtain the increment of energy for the whole system.
Now by (93) we have

p2 “ ´ε2
V ` tη2

V ` µ2
1γ

2
1 ` µ2γ

2
2 ` etc.

By this equation and (659), our expression for the total increment of energy
in the system may be reduced to the form

ż

rε1
V ´ tη1

V ´ µ2
1γ

1
1 ` p2 ` pc1 ` c2qσs δNDs. (660)

In order that this shall vanish for any values of δN , it is necessary that the
coefficient of δNDs shall vanish. This gives for the condition of equilibrium

µ2
1 “

ε1
V ´ tη1

V ` p2 ` pc1 ` c2qσ

γ1
1

. (661)

This equation is identical with (387), with the exception of the term containing
σ, which vanishes when the surface is plane. †

∗ The potential µ2
1 is marked by double accents in order to indicate that its value is to be determined in

the fluid mass, and to distinguish it from the potential µ1
1 relating to the solid mass (when this is in a state

of isotropic stress), which, as we shall see, may not always have the same value. The other potentials µ2,
etc., have the same values as in (659), and consist of two classes, one of which relates to substances which
are components of the fluid mass (these might be marked by the double accents), and the other relates to
substances found only at the surface of discontinuity. The expressions to be multiplied by the potentials of
this latter class all have the value zero.

† In equation (387), the density of the solid is denoted by Γ, which is therefore equivalent to γ1
1 in (661).
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We may also observe that when the solid has no stresses except an isotropic
pressure, if the quantity represented by σ is equal to the true tension of the
surface, p2 ` pc1 ` c2qσ will represent the pressure in the interior of the solid,
and the second member of the equation will represent [see equation (93)] the
value of the potential in the solid for the substance of which it consists. In
this case, therefore, the equation reduces to

µ2
1 “ µ1

1,

that is, it expresses the equality of the potentials for the substance of the solid
in the two masses —the same condition which would subsist if both masses
were fluid.

Moreover, the compressibility of all solids is so small that, although σ may
not represent the true tension of the surface, nor p2 ` pc1 ` c2qσ the true
pressure in the solid when its stresses are isotropic, the quantities ε1

V and
η1
V if calculated for the pressure p2 ` pc1 ` c2qσ with the actual temperature

will have sensibly the same values as if calculated for the true pressure of
the solid. Hence, the second member of equation (661), when the stresses of
the solid are sensibly isotropic, is sensibly equal to the potential of the same
body at the same temperature but with the pressure p2 ` pc1 ` c2qσ, and
the condition of equilibrium with respect to dissolving for a solid of isotropic
stresses may be expressed with sufficient accuracy by saying that the potential
for the substance of the solid in the fluid must have this value. In like manner,
when the solid is not in a state of isotropic stress, the difference of the two
pressures in question will not sensibly affect the values of ε1

V and η1
V, and

the value of the second member of the equation may be calculated as if p2 `

pc1 ` c2qσ represented the true pressure in the solid in the direction of the
normal to the surface. Therefore, if we had taken for granted that the quantity
σ represents the tension of a surface between a solid and a fluid, as it does
when both masses are fluid, this assumption would not have led us into any
practical error in determining the value of the potential µ2

1 which is necessary
for equilibrium. On the other hand, if in the case of any amorphous body the
value of σ differs notably from the true surface tension, the latter quantity
substituted for σ in (661) will make the second member of the equation equal
to the true value of µ1

1, when the stresses are isotropic, but this will not be
equal to the value of µ2

1 in case of equilibrium, unless c1 ` c2 “ 0.
When the stresses in the solid are not isotropic, equation (661) may be re-

garded as expressing the condition of equilibrium with respect to the dissolving
of the solid, and is to be distinguished from the condition of equilibrium with
respect to an increase of solid matter, since the new matter would doubtless
be deposited in a state of isotropic stress. (The case would of course be dif-
ferent with crystalline bodies, which are not considered here.) The value of
µ2
1 necessary for equilibrium with respect to the formation of new matter is a

little less than that necessary for equilibrium with respect to the dissolving of
the solid. In regard to the actual behavior of the solid and fluid, all that the
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theory enables us to predict with certainty is that the solid will not dissolve if
the value of the potential µ2

1 is greater than that given by the equation for the
solid with its distorting stresses, and that new matter will not be formed if the
value of µ2

1 is less than the same equation would give for the case of the solid
with isotropic stresses.∗ It seems probable, however, that if the fluid in contact
with the solid is not renewed, the system will generally find a state of equilib-
rium in which the outermost portion of the solid will be in a state of isotropic
stress. If at first the solid should dissolve, this would supersaturate the fluid,
perhaps until a state is reached satisfying the condition of equilibrium with
the stressed solid, and then, if not before, a deposition of solid matter in a
state of isotropic stress would be likely to commence and go on until the fluid
is reduced to a state of equilibrium with this new solid matter.

The action of gravity will not affect the nature of the condition of equilib-
rium for any single point at which the fluid meets the solid, but it will cause
the values of p2 and µ2

1 in (661) to vary according to the laws expressed by
(612) and (617). If we suppose that the outer part of the solid is in a state of
isotropic stress, which is the most important case, since it is the only one in
which the equilibrium is in every sense stable, we have seen that the condition
(661) is at least sensibly equivalent to this: —that the potential for the sub-
stance of the solid which would belong to the solid mass at the temperature t
and the pressure p2 ` pc1 ` c2qσ must be equal to µ2

1. Or, if we denote by pp1q

the pressure belonging to solid with the temperature t and the potential equal
to µ2

1, the condition may be expressed in the form

pp1q “ p2 ` pc1 ` c2qσ. (662)

Now if we write γ2 for the total density of the fluid, we have by (612)

dp2 “ ´gγ2dz.

By (98)
d pp1q “ γ1

1dµ
2
1,

and by (617)
dµ2

1 “ ´gdz;

whence
d pp1q “ ´gγ1

1dz.

Accordingly we have

d pp1q ´ dp2 “ g pγ2 ´ γ1
1q dz,

∗ The possibility that the new solid matter might differ in composition from the original solid is here left
out of account. This point bas been discussed on pages 25-28, but without reference to the state of strain
of the solid or the influence of the curvature of the surface of discontinuity. The statement made above
may be generalized so as to hold true of the formation of new solid matter of any kind on the surface as
follows:—that new solid matter of any kind will not be formed upon the surface (with more than insensible
thickness), if the second member of (661) calculated for such new matter is greater than the potential in the
fluid for such matter.
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and
pp1q ´ p2 “ g pγ2 ´ γ1

1q z,

z being measured from the horizontal plane for which pp1q “ p2. Substituting
this value in (662), we obtain

c1 ` c2 “
g pγ2 ´ γ1

1q

σ
z. (663)

precisely as if both masses were fluid, and σ denoted the tension of their
common surface, and pp1q the true pressure in the mass specified. (Compare
(619).)

The obstacles to an exact experimental realization of these relations are
very great, principally from the want of absolute uniformity in the internal
structure of amorphous solids, and on account of the passive resistances to the
processes which are necessary to bring about a state satisfying the conditions
of theoretical equilibrium, but it may be easy to verify the general tendency
toward diminution of surface, which is implied in the foregoing equations.∗

Let us apply the same method to the case in which the solid is a crystal.
The surface between the solid and fluid will now consist of plane portions,
the directions of which may be regarded as invariable. If the crystal grows on
one side a distance δN , without other change, the increment of energy in the
vicinity of the surface will be

pε1
V ´ ε2

Vq sδN `
ÿ1 `

ε1
Sp1ql

1cosecω1 ´ εSp1ql
1 cotω1

˘

δN,

where ε1
V and ε2

V denote the volume-densities of energy in the crystal and fluid
respectively, s the area of the side on which the crystal grows, εSp1q the surface-
density of energy on that side, ε1

Sp1q the surface-density of energy on an adjacent
∗ It seems probable that a tendency of this kind plays an important part in some of the phenomena which

have been observed with respect to the freezing together of pieces of ice. (See especially Professor Faraday’s
”Note on Regelation” in the Proceedings of the Royal Society, vol. x. p. 440; or in the Philosophical
Magazine, 4th ser., vol. xxi, p. 146.) Although this is a body of crystalline structure, and the action which
takes place is doubtless influenced to a certain extent by the directions of the axes of crystallization, yet since
the phenomena have not been observed to depend upon the orientation of the pieces of ice we may conclude
that the effect, so tar as its general character is concerned, is such as might take place with an isotropic body.
In other words, for the purposes of a general explanation of the phenomena we may neglect the differences
in the values of σIW the suffixes are used to indicate that the symbol relates to the surface between ice and
water) for different orientations of the axes of crystallization, and also neglect the influence of the surface of
discontinuity with respect to crystalline structure, which must be formed by the freezing together of the two
masses of ice when the axes of crystallization in the two masses are not similarly directed. In reality, this
surface —or the necessity of the formation of such a surface if the pieces of ice freeze together—must exert
an influence adverse to their union, measured by a quantity σII, which is determined for this surface by the
same principles as when one of two contiguous masses is fluid, and varies with the orientations of the two
systems of crystallographic axes relatively to each other and to the surface. But under the circumstances of
the experiment, since we may neglect the possibility of the two systems of axes having precisely the same
directions, this influence is probably of a tolerably constant character, and is evidently not sufficient to alter
the general nature of the result. In order ”wholly to present the tendency of pieces of ice to freeze together,
when meeting in water with curved surfaces and without pressure, it would be necessary that σII ŕ 2σIW,
except so far as the case is modified by passive resistances to change, and by the inequality in the values of
σII and σIW for different directions of the axes of crystallization.

It will be observed that this view of the phenomena is in harmony with the opinion of Professor Faraday.
With respect to the union of pieces of ice as an indirect consequence of pressure, see page 144 of volume xi
of the Proceedings of the Royal Society: or the Philosophical Magazine, 4th ser., vol xxiii, p. 407.
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side, ω1 the external angle of these two sides, l1 their common edge, and the
symbol

ř1 a summation with respect to the different sides adjacent to the first.
The increments of entropy and of the quantities of the several components will
be represented by analogous formula, and if we deduce as on pages 265, 266 the
expression for the increase of energy in the whole system due to the growth
of the crystal without change of the total entropy or volume, and set this
expression equal to zero, we shall obtain for the condition of equilibrium

pε1
V ´ tη1

V ´ µ2
1γ

1
1 ` p2q sδN `

ÿ1
pσ1l1 cosecω1 ´ σl1 cotω1q δN “ 0, (664)

where σ and σ1 relate respectively to the same sides as εSp1q and ε1
Sp1q in the

preceding formula. This gives

µ2
t “

ε1
V ´ tη1

V ` p2

γ1
1

`

ÿ1
pσ1l1 cosecω1 ´ σl1 cotω1q

sγ1
1

. (665)

It will be observed that unless the side especially considered is small or
narrow, we may neglect the second fraction in this equation, which will then
give the same value of µ2

1 as equation (387), or as equation (661) applied to a
plane surface.

Since a similar equation must hold true with respect to every other side
of the crystal of which the equilibrium is not affected by meeting some other
body, the condition of equilibrium for the crystalline form (when unaffected
by gravity) is that the expression

ÿ1
pσ1l1 cosecω1 ´ σl1 cotω1q

s
(666)

shall have the same value for each side of the crystal. (By the value of this
expression for any side of the crystal is meant its value when σ and s are
determined by that side and the other quantities by the surrounding sides in
succession in connection with the first side.) This condition will not be affected
by a change in the size of a crystal while its proportions remain the same. But
the tendencies of similar crystals toward the form required by this condition,
as measured by the inequalities in the composition or the temperature of the
surrounding fluid which would counterbalance them, will be inversely as the
linear dimensions of the crystals, as appears from the preceding equation.

If we write v for the volume of a crystal, and
ř

pσsq for the sum of the
areas of all its sides multiplied each by the corresponding value of σ, the
numerator and denominator of the fraction (666), multiplied each by δN , may
be represented by δ

ř

pσsq and δv respectively. The value of the fraction is
therefore equal to that of the differential coefficient

d
ř

pσsq

dv
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as determined by the displacement of a particular side while the other sides
are fixed. The condition of equilibrium for the form of a crystal (when the
influence of gravity may be neglected) is that the value of this differential
coefficient must be independent of the particular side which is supposed to
be displaced. For a constant volume of the crystal,

ř

pσsq has therefore a
minimum value when the condition of equilibrium is satisfied, as may easily
be proved more directly.

When there are no foreign substances at the surfaces of the crystal, and the
surrounding fluid is indefinitely extended, the quantity

ř

pσsq represents the
work required to form the surfaces of the crystal, and the coefficient of sδN
in (664) with its sign reversed represents the work gained in forming a mass
of volume unity like the crystal but regarded as without surfaces. We may
denote the work required to form the crystal by

WS ´ WV,

WS denoting the work required to form the surfaces [i.e.,
ř

pσsq ], and WV the
work gained in forming the mass as distinguished from the surfaces. Equation
(664) may then be written

´δWV `
ÿ

pσδsq “ 0. (667)

Now (664) would evidently continue to hold true if the crystal were diminished
in size, remaining similar to itself in form and in nature, if the values of σ in all
the sides were supposed to diminish in the same ratio as the linear dimensions
of the crystal. The variation of WS would then be determined by the relation

dWS “ d
ÿ

pσsq “
3

2

ÿ

pσdsq,

and that of WV by (667). Hence,

dWS “
3

2
dWV,

and, since WS and WV vanish together,

WS “
3

2
WV,

WS ´ WV “
1

3
WS “

1

2
WV,

(668)

— the same relation which we have before seen to subsist with respect to a
spherical mass of fluid as well as in other cases. (See pages 209, 213, 248.)

The equilibrium of the crystal is unstable with respect to variations in size
when the surrounding fluid is indefinitely extended, but it may be made stable
by limiting the quantity of the fluid.
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To take account of the influence of gravity, we must give to µ2
1 and p2 in

(665) their average values in the side considered. These coincide (when the
fluid is in a state of internal equilibrium) with their values at the center of
gravity of the side. The values of γ1

1, ε
1
V, η

1
V may be regarded as constant, so

far as the influence of gravity is concerned. Now since by (612) and (617)

dp2 “ ´gγ2dz

and
dµ2

1 “ ´gdz,

we have
d pγ1

1µ
2
1 ´ p2q “ g pγ2 ´ γ1

1q dz.

Comparing (664), we see that the upper or the lower faces of the crystal will
have the greater tendency to grow (other things being equal), according as the
crystal is lighter or heavier than the fluid. When the densities of the two masses
are equal, the effect of gravity on the form of the crystal may be neglected.

In the preceding paragraph the fluid is regarded as in a state of internal
equilibrium. If we suppose the composition and temperature of the fluid to be
uniform, the condition which will make the effect of gravity vanish will be that

d pγ1
1µ

2
1 ´ p2q

dz
“ 0,

when the value of the differential coefficient is determined in accordance with
this supposition. This condition reduces to

ˆ

dµ1

dp

˙2

t,m

“
1

γ1
1

, ∗

which, by equation (92), is equivalent to
ˆ

dv

dm1

˙2

t,p,m

“
1

γ1
1

. (669)

The tendency of a crystal to grow will be greater in the upper or lower parts
of the fluid, according as the growth of a crystal at constant temperature and
pressure will produce expansion or contraction.

Again, we may suppose the composition of the fluid and its entropy per
unit of mass to be uniform. The temperature will then vary with the pressure,
that is, with z. We may also suppose the temperature of different crystals or
different parts of the same crystal to be determined by the fluid in contact with
them. These conditions express a state which may perhaps be realized when
the fluid is gently stirred. Owing to the differences of temperature we cannot

∗ A suffixed m is used to represent all the symbols m1, m3, etc., except such as may occur in the
differential coefficient.
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regard ε1
V and η1

V in (664) as constant, but we may regard their variations as
subject to the relation dε1

V “ tdη1
V. Therefore, if we make η1

V “ 0 for the mean
temperature of the fluid (which involves no real loss of generality), we may
treat ε1

V ´ tη1
V as constant. We shall then have for the condition that the effect

of gravity shall vanish
d pγ1

1µ
2
1 ´ p2q

dz
“ 0

which signifies in the present case that
ˆ

dµ1

dp

˙2

η,m

“
1

γ1
1

or, by (90)
ˆ

dv

dm1

˙2

η,p,m

“
1

γ1
1

(670)

Since the entropy of the crystal is zero, this equation expresses that the dis-
solving of a small crystal in a considerable quantity of the fluid will produce
neither expansion nor contraction, when the pressure is maintained constant
and no heat is supplied or taken away.

The manner in which crystals actually grow or dissolve is often principally
determined by other differences of phase in the surrounding fluid than those
which have been considered in the preceding paragraph. This is especially the
case when the crystal is growing or dissolving rapidly. When the great mass
of the fluid is considerably supersaturated, the action of the crystal keeps the
part immediately contiguous to it nearer the state of exact saturation. The
farthest projecting parts of the crystal will therefore be most exposed to the
action of the supersaturated fluid, and will grow most rapidly. The same parts
of a crystal will dissolve most rapidly in a fluid considerably below saturation.∗

But even when the fluid is supersaturated only so much as is necessary
in order that the crystal shall grow at all, it is not to be expected that the
form in which

ř

pσsq has a minimum value (or such a modification of that
form as may be due to gravity or to the influence of the body supporting the
crystal) will always be the ultimate result. For we cannot imagine a body of
the internal structure and external form of a crystal to grow or dissolve by an
entirely continuous process, or by a process in the same sense continuous as
condensation or evaporation between a liquid and gas, or the corresponding
processes between an amorphous solid and a fluid. The process is rather to be
regarded as periodic, and the formula (664) cannot properly represent the true
value of the quantities intended unless δN is equal to the distance between
two successive layers of molecules in the crystal, or a multiple of that distance.
Since this can hardly be treated as an infinitesimal, we can only conclude with

∗ See O. Lehmann, ”Ueber das Wachsthum der Krystalle,” Zeilschrift für Kryacallographie und Miner-
alogie, Bd. i, S. 453; or the review of the paper in Wiedemann’s Beiblätter, Bd. ii. S. 1.
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certainty that sensible changes cannot take place for which the expression (664)
would have a positive value. ∗

Let us now examine the special condition of equilibrium which relates to a
line at which three different masses meet, when one or more of these masses is
solid. If we apply the method of pages 265, 266 to a system containing such a
line, it is evident that we shall obtain in the expression corresponding to (660),
beside the integral relating to the surfaces, a term of the form

ż

ÿ

pσδT qDl

∗ That it is necessary that certain relations shall be precisely satisfied in order that equilibrium may
subsist between a liquid and gas with respect to evaporation, is explained (see Clausius, “Ueber die Art
der Bewegung, welche wir Wärme nennen,” Pogg. Ann., Bd. e, S. 353; or Abhand. über die mech.
Wärmetheorie, XIV) by supposing that a passage of individual molecules from the one mass to the other is
continually taking place, so that the slightest circumstance may give the preponderance to the passage of
matter in either direction. The same supposition may be applied, at least in many cases, to the equilibrium
between amorphous solids and fluids. Also in the case of crystals in equilibrium with fluids, there may be a
passage of individual molecules from one mass to the other, so as to cause insensible fluctuations in the mass
of the solid. If these fluctuations are such as to cause the occasional deposit or removal of a whole layer of
particles, the least cause would be sufficient to make the probability of one kind of change prevail over that
of the other, and it would be necessary for equilibrium that the theoretical conditions deduced above should
be precisely satisfied. But this supposition seems quite improbable, except with respect to a very small side.

The following view of the molecular state of a crystal when in equilibrium with respect to growth or
dissolution appears as probable as any. Since the molecules at the corners and edges of a perfect crystal
would be less firmly held in their places than those in the middle of a side, wa may suppose that when the
condition of theoretical equilibrium (665) is satisfied several of the outermost layers of molecules on each side
of the crystal are incomplete toward the edges. The boundaries of these imperfect layers probably fluctuate,
as individual molecules attach themselves to the crystal or detach themselves, but not so that a layer is
entirely removed (on any side of considerable size), to be restored again simply by the irregularities of the
motions indeed attach themselves to the side of the crystal but they will speedily be dislodged, and if any
molecules are thrown out from the middle of a surface, these deficiencies will also soon be made good; nor
will the tenency of these occurrences be such as greatly to affect the general smoothness of the surfaces,
except near the edges where the surfaces fall off somewhat, as before described. Now a continued growth on
any side of a crystal is impossible unless new layers can be formed. This will require a value of µ2

1 which
may exceed that given by equation (665) by a finite quantity. Since the difficulty in the formation of a new
layer is at or near the commencement of the formation, the necessary value of µ2

1 may be independent of the
area of the side, except when the side is very small. The value of µ2

1 which is necessary for the growth of
the crystal will however be different for different kinds of surfaces, and probably will generally be greatest
for the surfaces for which σ is least.

On the whole, it seems not improbable that the form of very minute crystals in equilibrium with solvents
is principally determined by equation (665), (i.e., by the condition that

ř

pσsq shall be a minimum for the
volume of the crystal except so far as the case is modified by gravity or the contact of other bodies), but
as they grow larger (in a solvent no more supersaturated than is necessary to make them grow at all), the
deposition of new matter on the different surfaces will be determined more by the nature (orientation) of
the surfaces and less by their size and relations to the surrounding surfaces. As a final result, a large crystal,
thus formed, will generally be bounded by those surfaces alone on which the deposit of new matter takes
place least readily, with small, perhaps insensible truncations. If one kind of surfaces satisfying this condition
cannot form a closed figure, the crystal will be bounded by two or three kinds of surfaces determined by the
same condition. The kinds of surface thus determined will probably generally be those for which σ has the
least values. But the relative development of the different kinds of sides, even if unmodified by gravity or
the contact of other bodies, will not be such as to make

ř

pσsq a minimum. The growth of the crystal will
finally be continued to sides of a single kind.

It does not appear that any part of the operation of removing a layer of molecules presents any especial
difficulty so marked as that of commencing a new layer: yet the values of µ2

1 which will just allow the
different stages of the process to go on must be slightly different, and therefore, for the continued dissolving
of the crystal the value of µ2

1 must be less (by a finite quantity) than that given by equation (665). It seems
probable that this would be especially true of those sides for which σ has the least values. The effect of
dissolving a crystal (even when it is done as slowly as possible) is therefore to produce a form which probably
differs from that of theoretical equilibrium in a direction opposite to that of a growing crystal.

274



to be interpreted as the similar term in (611), except so far as the definition of
σ has been modified in its extension to solid masses. In order that this term
shall be incapable of a negative value it is necessary that at every point of the
line

ÿ

pσδT q ŕ 0 (671)
for any possible displacement of the line. Those displacements are to be re-
garded as possible which are not prevented by the solidity of the masses, when
the interior of every solid mass is regarded as incapable of motion. At the
surfaces between solid and fluid masses, the processes of solidification and
dissolution will be possible in some cases, and impossible in others.

The simplest case is when two masses are fluid and the third is solid and
insoluble. Let us denote the solid by S, the fluids by A and B, and the angles
tilled by these fluids by α and β respectively. If the surface of the solid is con-
tinuous at the line where it meets the two fluids, the condition of equilibrium
reduces to

σAB cosα “ σBS ´ σAS. (672)
If the line where these masses meet is at an edge of the solid, the condition of
equilibrium is that

σAB cosα ő σBS ´ σAS,

and σAB cos β ő σAB ´ σBS;

*

(673)

which reduces to the preceding when α`β “ π. Since the displacement of the
line can take place by a purely mechanical process, this condition is capable
of a more satisfactory experimental verification than those conditions which
relate to processes of solidification and dissolution. Yet the frictional resistance
to a displacement of the line is enormously greater than in the case of three
fluids, since the relative displacements of contiguous portions of matter are
enormously greater. Moreover, foreign substances adhering to the solid are
not easily displaced, and cannot be distributed by extensions and contractions
of the surface of discontinuity, as in the case of fluid masses. Hence, the
distribution of such substances is arbitrary to a greater extent than in the
case of fluid masses (in which a single foreign substance in any surface of
discontinuity is uniformly distributed, and a greater number are at least so
distributed as to make the tension of the surface uniform), and the presence of
these substances will modify the conditions of equilibrium in a more irregular
manner.

If one or more of three surfaces of discontinuity which meet in a line divides
an amorphous solid from a fluid in which it is soluble, such a surface is to be
regarded as movable, and the particular conditions involved in (671) will be
accordingly modified. If the soluble solid is a crystal, the case will properly be
treated by the method used on pages 269, 269. The condition of equilibrium
relating to the line will not in this case be entirely separable from those re-
lating to the adjacent surfaces, since a displacement of the line will involve a
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displacement of the whole side of the crystal which is terminated at this line.
But the expression for the total increment of energy in the system due to any
internal changes not involving any variation in the total entropy or volume
will consist of two parts, of which one relates to the properties of the masses
of the system, and the other may be expressed in the form

δ
ÿ

pσsq,

the summation relating to all the surfaces of discontinuity. This indicates the
same tendency towards changes diminishing the value of

ř

pσsq, which appears
in other cases.∗

General Relations. —For any constant state of strain of the surface of the
solid, we may write

dεSp1q “ tdηSp1q ` µ2dΓ2p1q ` µ3dΓ3p1q ` etc., (674)

since this relation is implied in the definition of the quantities involved. From
this and (659) we obtain

dσ “ ´ηSp1qdt ´ Γ2p1qdµ2 ´ Γ3p1qdµ3 ´ etc. (675)

which is subject, in strictness, to the same limitation—that the state of strain
of the surface of the solid remains the same. But this limitation may in most
cases be neglected. (If the quantity σ represented the true tension of the
surface, as in the case of a surface between fluids, the limitation would be
wholly unnecessary.)

Another method and notation. —We have so far supposed that we have
to do with a non-homogeneous film of matter between two homogeneous (or
very nearly homogeneous) masses, and that the nature and state of this film
is in all respects determined by the nature and state of these masses together
with the quantities of the foreign substances which may be present in the film.
(See page 263.) Problems relating to processes of solidification and dissolution
seem hardly capable of a satisfactory solution, except on this supposition,
which appears in general allowable with respect to the surfaces produced by
these processes. But in considering the equilibrium of fluids at the surface of
an unchangeable solid, such a limitation is neither necessary nor convenient.

∗ The freezing together of wool and ice may be mentioned here. The fact that a fiber of wool which
remains in contact with a block of ice under water will become attached to it seems to be strictly analogous
to the fact that if a solid body be brought into such a position that it just couches the free surface of water,
the water will generally rise up about the point of contact so as to touch the solid over a surface of some
extent. The condition of the latter phenomenon is

σSA ` σWA ą σSW,

where the suffixes s, 4, and o refer to the solid, to air, and to water, respectively. I. like manner, the condition
for the freezing of the ice to the wool, if we neglect the allotropic properties of the ice, is

σSW ` σWA ą σSI,

where the suffixes S, A, and W relate to wool, to water, and to ice, respectively. See Proc. Roy. Soc., vol.
x, p. 447; or Phil. Mag., 4th ser., vol. xxi, p. 151.
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The following method of treating the subject will be found more simple and
at the same time more general.

Let us suppose the superficial density of energy to be determined by the
excess of energy in the vicinity of the surface over that which would belong to
the solid, if (with the same temperature and state of strain) it were bounded
by a vacuum in place of the fluid, and to the fluid, if it extended with a
uniform volume-density of energy just up to the surface of the solid, or, if in
any case this does not sufficiently define a surface, to a surface determined in
some definite way by the exterior particles of the solid. Let us use the symbol
pεSq to denote the superficial energy thus defined. Let us suppose a superficial
density of entropy to be determined in a manner entirely analogous, and be
denoted by pηSq. In like manner also, for all the components of the fluid,
and for all foreign fluid substances which may be present at the surface, let
the superficial densities be determined, and denoted by pΓ2q , pΓ3q, etc. These
superficial densities of the fluid components relate solely to the matter which
is fluid or movable. All matter which is immovably attached to the solid mass
is to be regarded as a part of the same. Moreover, let ζ be defined by the
equation

ζ “ pεSq ´ t pηSq ´ µ2 pΓ2q ´ µ3 pΓ3q ´ etc. (676)
These quantities will satisfy the following general relations:—

d pεSq “ td pηSq ` µ2d pΓ2q ` µ3d pΓ3q ` etc. , (677)

dζ “ ´ pηSq dt ´ pΓ2q dµ2 ´ pΓ3q dµ3 “ etc. (678)
In strictness, these relations are subject to the same limitation as (674) and
(675). But this limitation may generally be neglected. In fact, the values of
ζ, pεSq, etc. must in general be much less affected by variations in the state of
strain of the surface of the solid than those of σ, εSp1q, etc.

The quantity ζ evidently represents the tendency to contraction in that
portion of the surface of the fluid which is in contact with the solid. It may
be called the superficial tension of the fluid in contact with the solid. Its value
may be either positive or negative.

It will be observed for the same solid surface and for the same temperature
but for different fluids the values of σ (in all cases to which the definition of
this quantity is applicable) will differ from those of ζ by a constant, viz. the
value of σ for the solid surface in a vacuum.

For the condition of equilibrium of two different fluids at a line on the
surface of the solid, we may easily obtain

σAB cosα “ ζBS ´ ζAS, (679)

the suffixes, etc., being used as in (672), and the condition being subject to
the same modification when the fluids meet at an edge of the solid.
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It must also be regarded as a condition of theoretical equilibrium at the line
considered [subject, like (679), to limitation on account of passive resistances
to motion,] that if there are any foreign substances in the surfaces A-S and
B-S, the potentials for these substances shall have the same value on both sides
of the line; or, if any such substance is found only on one side of the line, that
the potential for that substance must not have a less value on the other side;
and that the potentials for the components of the mass A, for example, must
have the same values in the surface B-C as in the mass A, or, if they are not
actual components of the surface B-C, a value not less than in A. Hence, we
cannot determine the difference of the surface tensions of two fluids in contact
with the same solid, by bringing them together upon the surface of the solid,
unless these conditions are satisfied, as well as those which are necessary to
prevent the mixing of the fluid masses.

The investigation on pages 227-234 of the conditions of equilibrium for a
fluid system under the influence of gravity may easily be extended to the case
in which the system is bounded by or includes solid masses, when these can
be treated as rigid and incapable of dissolution. The general condition of
mechanical equilibrium would be of the form

´

ż

pδDv `

ż

gγδzDv `

ż

σδDs `

ż

gΓδzDs

`

ż

gδzDm `

ż

ζδDs `

ż

gpΓqδzDs “ 0,

(680)

where the first four integrals relate to the fluid masses and the surfaces which
divide them, and have the same signification as in equation (606), the fifth
integral relates to the movable solid masses, and the sixth and seventh to the
surfaces between the solids and fluids, pΓq denoting the sum of the quantities
pΓ2q , pΓ3q, etc. It should be observed that at the surface where a fluid meets a
solid δZ and δz, which indicate respectively the displacements of the solid and
the fluid, may have different values, but the components of these displacements
which are normal to the surface must be equal.

From this equation, among other particular conditions of equilibrium, we
may derive the following —

dζ “ gpΓqdz, (681)
[compare (614),] which expresses the law governing the distribution of a thin
fluid film on the surface of a solid, when there are no passive resistances to its
motion.

By applying equation (680) to the case of a vertical cylindrical tube con-
taining two different fluids, we may easily obtain the well-known theorem that
the product of the perimeter of the internal surface by the difference ζ 1 ´ ζ2 of
the superficial tensions of the upper and lower fluids in contact with the tube is
equal to the excess of weight of the matter in the tube above that which would
be there, if the boundary between the fluids were in the horizontal plane at

278



which their pressures would be equal. In this theorem, we may either include
or exclude the weight of a film of fluid matter adhering to the tube. The propo-
sition is usually applied to the column of fluid in mass between the horizontal
plane for which p1 “ p2 and the actual boundary between the two fluids. The
superficial tensions ζ 1 and ζ2 are then to be measured in the vicinity of this
column. But we may also include the weight of a film adhering to the internal
surface of the tube. For example, in the case of water in equilibrium with its
own vapor in a tube, the weight of all the water-substance in the tube above
the plane p1 “ p2, diminished by that of the water-vapor which would fill the
same space, is equal to the perimeter multiplied by the difference in the values
of ζ at the top of the tube and at the plane p1 “ p2. If the height of the tube
is infinite, the value of ζ at the top vanishes, and the weight of the film of
water adhering to the tube and of the mass of liquid water above the plane
p1 “ p2 diminished by the weight of vapor which would till the same space is
equal in numerical value but of opposite sign to the product of the perimeter
of the internal surface of the tube multiplied by ζ2, the superficial tension of
liquid water in contact with the tube at the pressure at which the water and
its vapor would be in equilibrium at a plane surface. In this sense, the total
weight of water which can be supported by the tube per unit of the perimeter
of its surface is directly measured by the value of ´ζ for water in contact with
the tube.
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Modification of the Conditions of Equilibrium by
Electromotive Force. —Theory of a Perfect
Electro-Chemical Apparatus.

We know by experience that in certain fluids (electrolytic conductors) there
is a connection between the fluxes of the component substances and that of
electricity. The quantitative relation between these fluxes may be expressed
by an equation of the form

De “
Dma

αa

`
Dmb

αb

` etc. ´
Dmg

αg

´
Dmh

αh

´ etc. , (682)

where De,Dma, etc. denote the infinitesimal quantities of electricity and of the
components of the fluid which pass simultaneously through any same surface,
which may be either at rest or in motion, and αa, αb, etc., αg, αh, etc. denote
positive constants. We may evidently regard Dma,Dmb, etc., Dmg,Dmh, etc.
as independent of one another. For, if they were not so, one or more could be
expressed in terms of the others, and we could reduce the equation to a shorter
form in which all the terms of this kind would be independent.

Since the motion of the fluid as a whole will not involve any electrical
current, the densities of the components specified by the suffixes must satisfy
the relation γa

αa

`
γb
αb

` etc. “
γg
αg

`
γh
αh

` etc. (683)

These densities, therefore, are not independently variable, like the densities of
the components which we have employed in other cases.

We may account for the relation (682) by supposing that electricity (positive
or negative) is inseparably attached to the different kinds of molecules, so long
as they remain in the interior of the fluid, in such a way that the quantities
αa, αb, etc. of the substances specified are each charged with a unit of positive
electricity, and the quantities αg, αh, etc. of the substances specified by these
suffixes are each charged with a unit of negative electricity. The relation (683)
is accounted for by the fact that the constants αa, αg, etc. are so small that
the electrical charge of any sensible portion of the fluid varying sensibly from
the law expressed in (683) would be enormously great, so that the formation
of such a mass would be resisted by a very great force.

It will be observed that the choice of the substances which we regard as
the components of the fluid is to some extent arbitrary, and that the same
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physical relations may be expressed by different equations of the form (682), in
which the fluxes are expressed with reference to different sets of components.
If the components chosen are such as represent what we believe to be the
actual molecular constitution of the fluid, those of which the fluxes appear in
the equation of the form (682) are called the ions, and the constants of the
equation are called their electro-chemical equivalents. For our present purpose,
which has nothing to do with any theories of molecular constitution, we may
choose such a set of components as may be convenient, and call those ions,
of which the fluxes appear in the equation of the form (682), without farther
limitation.

Now, since the fluxes of the independently variable components of an elec-
trolytic fluid do not necessitate any electrical currents, all the conditions of
equilibrium which relate to the movements of these components will be the
same as if the fluid were incapable of the electrolytic process. Therefore all the
conditions of equilibrium which we have found without reference to electrical
considerations, will apply to an electrolytic fluid and its independently variable
components. But we have still to seek the remaining conditions of equilibrium,
which relate to the possibility of electrolytic conduction.

For simplicity, we shall suppose that the third is without internal surfaces
of discontinuity (and therefore homogeneous except so far as it may be slightly
affected by gravity), and that it meets metallic conductors (electrodes) in dif-
ferent parts of its surface, being otherwise bounded by non-conductors. The
only electrical currents which it is necessary to consider are those which enter
the electrolyte at one electrode and leave it at another.

If all the conditions of equilibrium are fulfilled in a given state of the system,
except those which relate to changes involving a flux of electricity, and we
imagine the state of the system to be varied by the passage from one electrode
to another of the quantity of electricity δe accompanied by the quantity δma

of the component specified, without any flux of the other components or any
variation in the total entropy, the total variation of energy in the system will
be represented by the expression

pV 2 ´ V 1q δe ` pµ2
a ´ µ1

aq δma ` pΥ2 ´ Υ1q δma,

in which V 1, V 2 denote the electrical potentials in pieces of the same kind of
metal connected with the two electrodes, Υ1,Υ2, the gravitational potentials
at the two electrodes, and µ1

a, µ
2
a, the intrinsic potentials for the substance

specified. The first term represents the increment of the potential energy of
electricity, the second the increment of the intrinsic energy of the ponderable
matter, and the third the increment of the energy due to gravitation.∗ But by
(682)

δma “ αaδe.

∗ It is here supposed that the gravitational potential may be regarded as constant for each electrode.
When this is not the case the expression may be applied to small parts of the electrodes taken separately.
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It is therefore necessary for equilibrium that

V 2 ´ V 1 ` αa pµ2
a ´ µ1

a ´ Υ2 ` Υ1q “ 0. (684)

To extend this relation to all the electrodes we may write

V 1 ` αa pµ1
a ´ Υ1q “ V 2 ` αa pµ2

a ´ Υ2q

“ V 3 ` αa pµ3
a ´ Υ3q “ etc. (685)

For each of the other cations (specified by b etc.) there will be a similar
condition, and for each of the anions a condition of the form

V 1 ´ αa pµ1
a ´ Υ1q “ V 2 ´ αa pµ2

a ´ Υ2q “ V 3 ´ αa pµ3
a ´ Υ3q “ etc. (686)

When the effect of gravity may be neglected, and there are but two elec-
trodes, as in a galvanic or electrolytic cell, we have for any cation

V 2 ´ V 1 “ αa pµ1
a ´ µ2

aq , (687)

and for any anion
V 2 ´ V 1 “ αg

`

µ2
g ´ µ1

g

˘

, (688)
where V 2 ´ V 1 denotes the electromotive force of the combination. That is:—

When all the conditions of equilibrium are fulfilled in a galvanic or elec-
trolytic cell, the electromotive force is equal to the difference in the values of
the potential for any ion or apparent ion at the surfaces of the electrodes mul-
tiplied by the electro-chemical equivalent of that ion, the greater potential of
an anion being at the same electrode as the greater electrical potential, and the
reverse being true of a cation.

Let us apply this principle to different cases.
(I). If the ion is an independently variable component of an electrode, or by

itself constitutes an electrode, the potential for the ion (in any case of equilib-
rium which does not depend upon passive resistances to change) will have the
same value within the electrode as on its surface, and will be determined by the
composition of the electrode with its temperature and pressure. This might be
illustrated by a cell with electrodes of mercury containing certain quantities
of zinc in solution (or with one such electrode and the other of pure zinc) and
an electrolytic fluid containing a salt of zinc, but not capable of dissolving the
mercury.∗ We may regard a cell in which hydrogen acts as an ion between elec-
trodes of palladium charged with hydrogen as another illustration of the same
principle, but the solidity of the electrodes and the consequent resistance to
the diffusion of the hydrogen within them (a process which cannot be assisted

∗ If the electrolytic fluid dissolved the mercury as well as the zinc, equilibrium could only subsist when
the electromotive force is zero, and the composition of the electrodes identical. For when the electrodes are
formed of the two metals in different proportions, that which has the greater potential for zinc will have
the less potential for mercury. [See equation (98).] This is inconsistent with equilibrium, according to the
principle mentioned above, if both metals can act as cations.
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by convective currents as in a liquid mass) present considerable obstacles to
the experimental verification of the relation.

(II) Sometimes the ion is soluble (as an independently variable component)
in the electrolytic fluid. Of course its condition in the fluid when thus dissolved
must be entirely different from its condition when acting on an ion, in which
case its quantity is not independently variable as we have already seen. Its
diffusion in the fluid in this state of solution is not necessarily connected with
any electrical current, and in other relations its properties may be entirely
changed. In any discussion of the internal properties of the fluid (with respect
to its fundamental equation, for example), it would be necessary to treat it as
a different substance. (See page 63.) But if the process by which the charge of
electricity passes into the electrode, and the ion is dissolved in the electrolyte is
reversible, we may evidently regard the potentials for the substance of the ion in
(687) or (688) as relating to the substance thus dissolved in the electrolyte. In
case of absolute equilibrium, the density of the substance that dissolved would
of course be uniform throughout the fluid (since it can move independently
of any electrical current), so that by the strict application of our principle we
only obtain the somewhat barren result that if any of the ions are soluble in
the fluid without their electrical charges, the electromotive force must vanish
in any case of absolute equilibrium not dependent upon passive resistances.
Nevertheless, cases in which the ion is thus dissolved in the electrolytic fluid
only to a very small extent, and its passage from one electrode to the other
by ordinary diffusion is extremely slow, may be regarded as approximating to
the case in which it is incapable of diffusion. In such cases, we may regard
the relations (687), (688) as approximately valid, although the condition of
equilibrium relating to the diffusion of the dissolved ion is not satisfied. This
may be the case with hydrogen and oxygen as ions (or apparent ions) between
electrodes of platinum in some of its forms.

(III) The ion may appear in mass at the electrode. If it be a conductor of
electricity, it may be regarded as forming an electrode, as soon as the deposit
has become thick enough to have the properties of matter in mass. The case
therefore will not be different from that first considered. When the ion is a
non-conductor, a continuous thick deposit on the electrode would of course
prevent the possibility of an electrical current. But the case in which the ion
being a nonconductor is disengaged in masses contiguous to the electrode but
not entirely covering it, is an important one. It may be illustrated by hydrogen
appearing in bubbles at a cathode. In case of perfect equilibrium, indepen-
dent of passive resistances, the potential of the ion in (687) or (688) may be
determined in such a mass. Yet the circumstances are quite unfavorable for
the establishment of perfect equilibrium, unless the ion is to some extent ab-
sorbed by the electrode or electrolytic fluid, or the electrode is fluid. For if the
ion must pass immediately into the non-conducting mass, while the electric-
ity passes into the electrode, it is evident that the only possible terminus of
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an electrolytic current is at the line where the electrode, the non-conducting
mass, and the electrolytic fluid meet, so that the electrolytic process is neces-
sarily greatly retarded, and an approximate ceasing of the current cannot be
regarded as evidence that a state of approximate equilibrium has been reached.
But even a slight degree of solubility of the ion in the electrolytic fluid or in
the electrode may greatly diminish the resistance to the electrolytic process,
and help toward producing that state of complete equilibrium which is sup-
posed in the theorem we are discussing. And the mobility of the surface of a
liquid electrode may act in the same way. When the ion is absorbed by the
electrode, or by the electrolytic fluid, the case of course comes under the heads
which we have already considered, yet the fact that the ion is set free in mass
is important, since it is in such a mass that the determination of the value of
the potential will generally be most easily made.

(IV.) When the ion is not absorbed either by the electrode or by the elec-
trolytic fluid, and is not set free in mass, it may still be deposited on the
surface of the electrode. Although this can take place only to a limited ex-
tent (without forming a body having the properties of matter in mass), yet
the electro-chemical equivalents of all substances are so small that a very con-
siderable flux of electricity may take place before the deposit will have the
properties of matter in mass. Even when the ion appears in mass, or is ab-
sorbed by the electrode or electrolytic fluid, the non-homogeneous film between
the electrolytic fluid and the electrode may contain an additional portion of
it. Whether the ion is continued to the surface of the electrode or not, we
may regard this as one of the cases in which we have to recognize a certain
superficial density of substances at surfaces of discontinuity, the general theory
of which we have already considered.

The deposit of the ion will affect the superficial tension of the electrode
if it is liquid, or the closely related quantity which we have denoted by the
same symbol σ (see pages 263-279) if the electrode is solid. The effect can
of course be best observed in the case of a liquid electrode. But whether
the electrodes are liquid or solid, if the external electromotive force V 1 ´ V 2

applied to an electrolytic combination is varied, when it is too weak to produce
a lasting current, and the electrodes are thereby brought into a new state of
polarization in which they make equilibrium with the altered value of the
electromotive force, without change in the nature of the electrodes or of the
electrolytic fluid, then by (508) or (675)

dσ1 “ ´Γ1
adµ

1
a,

dσ2 “ ´Γ2
adµ

2
a;

and by (687),
d pV 1 ´ V 2q “ ´αa pdµ1

a ´ dµ2
aq .

Hence
d pV 1 ´ V 2q “

αa

Γ1
a

dσ1 ´
αa

Γ2
a

dσ2. (689)
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If we suppose that the state of polarization of only one of the electrodes is
affected (as will be the case when its surface is very small compared with that
of the other), we have

dσ1 “
Γ1
a

αa

d pV 1 ´ V 2q (690)

The superficial tension of one of the electrodes is then a function of the elec-
tromotive force.

This principle has been applied by M. Lippmann to the construction of the
electrometer which bears his name.∗ In applying equations (689) and (690)
to dilute sulphuric acid between electrodes of mercury, as in a Lippmann’s
electrometer, we may suppose that the suffix refers to hydrogen. It will be
most convenient to suppose the dividing surface to be so placed as to make the
surface-density of mercury zero. (See page 186.) The matter which exists in
excess or deficiency at the surface may then be expressed by the surface densi-
ties of sulphuric acid, of water, and of hydrogen. The value of the last may be
determined from equation (690). According to M. Lippmann’s determinations,
it is negative when the surface is in its natural state (i.e., the state to which
it tends when no external electromotive force is applied), since σ1 increases
with V 2 ´V 1. When V 2 ´V 1 is equal to nine-tenths of the electromotive force
of a Daniell’s cell, the electrode to which V 2 relates remaining in its natural
state, the tension σ1 of the surface of the other electrode has a maximum value,
and there is no excess or deficiency of hydrogen at that surface. This is the
condition toward which a surface tends when it is extended while no flux of
electricity takes place. The flux of electricity per unit of new surface formed,
which will maintain a surface in a constant condition while it is extended, is
represented by Γ1

a

αa

in numerical value, and its direction, when Γ2
a is negative,

is from the mercury into the acid.
We have so far supposed, in the main, that there are no passive resistances

to change, except such as vanish with the rapidity of the processes which
they resist. The actual condition of things with respect to passive resistances
appears to be nearly as follows. There does not appear to be any passive
resistance to the electrolytic process by which an ion is transferred from one
electrode to another, except such as vanishes with the rapidity of the process.
For, in any case of equilibrium, the smallest variation of the externally applied
electromotive force appears to be sufficient to cause a (temporary) electrolytic
current. But the case is not the same with respect to the molecular changes
by which the ion passes into new combinations or relations, as when it enters
into the mass of the electrodes, or separates itself in mass, or is dissolved (no
longer with the properties of an ion) in the electrolytic fluid. In virtue of
the passive resistance to these processes, the external electromotive force may
often vary within wide limits, without creating any current by which the ion

∗ -See his memoir: ”Relations entre les phénomènes électriqques et capillaires,” Anales de Chimic et de
Physique, 5” rérie, t. v, p. 494.
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is transferred from one of the masses considered to the other. In other words,
the value of V 1 ´ V 2 may often differ greatly from that obtained from (687)
or (688) when we determine the values of the potentials for the ion as in cases
I, II, and III. We may, however, regard these equations as entirely valid, when
the potentials for the ions are determined at the surface of the electrodes with
reference to the ion in the condition in which it is brought there or taken away
by an electrolytic current, without any attendant irreversible processes. But in
a complete discussion of the properties of the surface of an electrode it may be
necessary to distinguish (both in respect to surface-densities and to potentials)
between the substance of the ion in this condition and the same substance
in other conditions into which it cannot pass (directly) without irreversible
processes. No such distinction, however, is necessary when the substance of
the ion can puss at the surface of the electrode by reversible processes from
any one of the conditions in which it appears to any other.

The formula(687), (688) afford as many equations as there are ions. These,
however, amount to only one independent equation additional to those which
relate to the independently variable components of the electrolytic fluid. This
appears from the consideration that a flux of any cation may be combined
with a flux of any anion in the same direction so as to involve no electrical
current, and that this may be regarded as the flux of an independently variable
component of the electrolytic fluid.

General Properties of a Perfect Electro-chemical Appa-
ratus.

When an electrical current passes through a galvanic or electrolytic cell, the
state of the cell is altered. If no changes take place in the cell except during
the passage of the current, and all changes which accompany the current can
be reversed by reversing the current, the cell may be called a perfect electro-
chemical apparatus. The electromotive force of the cell may be determined by
the equations which have just been given. But some of the general relations
to which such an apparatus is subject may be conveniently stated in a form in
which the ions are not explicitly mentioned.

In the most general case, we may regard the cell as subject to external action
of four different kinds. (1) The supply of electricity at one electrode and the
withdrawal of the same quantity at the other. (2) The supply or withdrawal
of a certain quantity of heat. (3) The action of gravity. (4) The motion of
the surfaces enclosing the apparatus, as when its volume is increased by the
liberation of gases.

The increase of the energy in the cell is necessarily equal to that which it
receives from external sources. We may express this by the equation

dε “ pV 1 ´ V 2q de ` dQ ` dWG ` dWP, (691)
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in which dε denotes the increment of the intrinsic energy of the cell, de the
quantity of electricity which passes through it. V 1 and V 2 the electrical po-
tentials in masses of the some kind of metal connected with the anode and
cathode respectively. dQ the heat received from external bodies, dWG the
work done by gravity, and dWP the work done by the pressures which act on
the external surface of the apparatus.

The conditions under which we suppose the processes to take place are such
that the increase of the entropy of the apparatus is equal to the entropy which
it receives from external sources. The only external source of entropy is the
heat which is communicated to the cell by the surrounding bodies. If we write
dη for the increment of entropy in the cell, and t for the temperature, we have

dη “
dQ

t
. (692)

Eliminating dQ, we obtain

dε “ pV 1 ´ V 2q de ` tdη ` dWG ` dWP, (693)

or
V 2 ´ V 1 “ ´

dε

de
` t

dη

de
`

dWG

de
`

dWP

de
. (694)

It is worth while to notice that if we give up the condition of the reversibility
of the processes, so that the cell is no longer supposed to be a perfect electro-
chemical apparatus, the relation (691) will still subsist. But, if we still suppose,
for simplicity, that all parts of the cell have the same temperature, which is
necessarily the case with a perfect electro-chemical apparatus, we shall have,
instead of (692),

dη ŕ
dQ

t
, (695)

and instead of (693), (694)

pV 2 ´ V 1q de ő ´dε ` tdη ` dWG ` dWP. (696)

The values of the several terms of the second member of (694) for a given
cell, will vary with the external influences to which the cell is subjected. If the
cell is enclosed (with the products of electrolysis) in a rigid envelop, the last
term will vanish. The term relating to gravity is generally to be neglected.
If no heat is supplied or withdrawn, the term containing dη will vanish. But
in the calculation of the electromotive force, which is the most important
application of the equation, it is generally more convenient to suppose that
the temperature remains constant.

The quantities expressed by the terms containing dQ and dη in (691), (693),
(694), and (696) are frequently neglected in the consideration of cells of which
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the temperature is supposed to remain constant. In other words, it is frequently
assumed that neither heat nor cold is produced by the passage of an electrical
current through a perfect electro-chemical combination (except that heat which
may be indefinitely diminished by increasing the time in which a given quantity
of electricity passes), and that only heat can be produced in any cell, unless it
be by processes of a secondary nature, which are not immediately or necessarily
connected with the process of electrolysis.

It does not appear that this assumption is justified by any sufficient reason.
In fact, it is easy to find a case in which the electromotive force is determined
entirely by the term t

dη

dε
in (694), all the other terms in the second member

of the equation vanishing. This is true of a Grove’s gas battery charged with
hydrogen and nitrogen. In this case, the hydrogen passes over to the nitrogen,
—a process which does not alter the energy of the cell, when maintained at
a constant temperature. The work done by external pressures is evidently
nothing, and that done by gravity is (or may be) nothing. Yet an electrical
current is produced. The work done (or which may be done) by the current
outside of the cell is the equivalent of the work (or of a part of the work) which
might be gained by allowing the gases to mix in other ways. This is equal, as
has been shown by Lord Rayleigh∗ to the work which may be gained by allowing
each gas separately to expand at constant temperature from its initial volume
to the volume occupied by the two gases together. The same work is equal,
as appears from equations (278), (279) on page 156 (see also page 159), to the
increase of the entropy of the system multiplied by the temperature.

It is possible to vary the construction of the cell in such a way that nitrogen
or other neutral gas will not be necessary. Let the cell consist of a U-shaped
tube of sufficient height, and have pure hydrogen at each pole under very
unequal pressures (as of one and two atmospheres respectively) which are
maintained constant by properly weighted pistons, sliding in the arms of the
tube: The difference of the pressures in the gas-masses at the two electrodes
must of course be balanced by the difference in the height of the two columns
of acidulated water. It will hardly be doubted that such an apparatus would
have an electromotive force acting in the direction of a current which would
carry the hydrogen from the denser to the rarer mass. Certainly the gas could
not be carried in the opposite direction by an external electromotive force
without the expenditure of as much (electromotive) work as is equal to the
mechanical work necessary to pump the gas from the one arm of the tube to
the other. And if by any modification of the metallic electrodes (which remain
unchanged by the passage of electricity) we could reduce the passive resistances
to zero, so that the hydrogen could be carried reversibly from one mass to the
other without finite variation of the electromotive force, the only possible value
of the electromotive force would be represented by the expression t

dη

de
, as a

∗ Philosophical Magazine, vol. xlix, p. 311.
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very close approximation. It will be observed that although gravity plays an
essential part in a cell of this kind by maintaining the difference of pressure in
the masses of hydrogen, the electromotive force cannot possibly be ascribed to
gravity, since the work done by gravity, when hydrogen passes from the denser
to the rarer mass, is negative.

Again, it is entirely improbable that the electrical currents caused by differ-
ences in the concentration of solutions of salts (as in a cell containing sulphate
of zinc between zinc electrodes, or sulphate of copper between copper elec-
trodes, the solution of the salt being of unequal strength at the two electrodes),
which have recently been investigated theoretically and experimentally by M.
Helmholtz and Moser,∗ are continued to cases in which the mixture of solu-
tions of different degrees of concentration will produce heat. Yet in cases in
which the mixture of more and less concentrated solutions is not attended with
evolution or absorption of heat, the electromotive force must vanish in a cell
of the kind considered, if it is determined simply by the diminution of energy
in the cell. And when the mixture produces cold, the same rule would make
any electromotive force impossible except in the direction which would tend
to increase the difference of concentration. Such conclusions would be quite
irreconcilable with the theory of the phenomena given by Professor Helmholtz.

A more striking example of the necessity of taking account of the variations
of entropy in the cell in a priori determinations of electromotive force is af-
forded by electrodes of zinc and mercury in a solution of sulphate of zinc. Since
heat is absorbed when zinc is dissolved in mercury,† the energy of the cell is
increased by a transfer of zinc to the mercury, when the temperature is main-
tained constant. Yet in this combination, the electromotive force acts in the
direction of the current producing such a transfer.‡ The couple presents cer-
tain anomalies when a considerable quantity of zinc is united with the mercury.
The electromotive force changes its direction, so that this case is usually cited
as an illustration of the principle that the electromotive force is in the direction
of the current which diminishes the energy of the cell, i.e., which produces or
allows those changes which are accompanied by evolution of heat when they
take place directly. But whatever may be the cause of the electromotive force
which has been observed acting in the direction from the amalgam through
the electrolyte to the zinc (a force which according to the determinations of M.
Gaugain is only one twenty-fifth part of that which acts in the reverse direc-
tion when pure mercury takes the place of the amalgam), these anomalies can
hardly affect the general conclusions with which alone we are here concerned.
If the electrodes of a cell are pure zinc and an amalgam containing zinc not
in excess of the amount which the mercury will dissolve at the temperature of
the experiment without losing its fluidity, and if the only change (other than
thermal) accompanying a current is a transfer of zinc from one electrode to the

∗ Annalen der Physik und Chemie, Neue Folge, Band iii, February, 1878.
† J. Regnauid. Comptes Rendus, t. li, p. 778.
‡ Gaugain, Comptes Rendus, t. xlii, p. 430.
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other, —conditions which may not have been satisfied in all the experiments
recorded, but which it is allowable to suppose in a theoretical discussion, and
which certainly will not be regarded as inconsistent with the fact that heat is
absorbed when zinc is dissolved in mercury, —it is impossible that the elec-
tromotive force should be in the direction of a current transferring zinc from
the amalgam to the electrode of pure zinc. For, since the zinc eliminated from
the amalgam by the electrolytic process might be re-dissolved directly, such a
direction of the electromotive force would involve the possibility of obtaining
an indefinite amount of electromotive work, and therefore of mechanical work,
without other expenditure than that of heat at the constant temperature of
the cell.

None of the cases which we have been considering involve combinations
by definite proportions, and, except in the case of the cell with electrodes of
mercury and zinc, the electromotive forces are quite small. It may perhaps be
thought that with respect to those cells in which combinations take place by
definite proportions the electromotive force may be calculated with substantial
accuracy from the diminution of the energy, without regarding the variation of
entropy. But the phenomena of chemical combination do not in general seem
to indicate any possibility of obtaining from the combination of substances by
any process whatever an amount of mechanical work which is equivalent to the
heat produced by the direct union of the substances.

A kilogramme of hydrogen, for example, combining by combustion under
the pressure of the atmosphere with eight killogrammes of oxygen to form
liquid water, yields an amount of heat which may be represented in round
numbers by 34000 calories.∗ We may suppose that the gases are taken at
the temperature of 0˝C., and that the water is reduced to the same temper-
ature. But this heat cannot be obtained at any temperature desired. A very
high temperature has the effect of preventing to a greater or less extent, the
combination of the elements. Thus, according to M. Sainte-Claire Deville,† the
temperature obtained by the combustion of hydrogen and oxygen cannot much
if at all exceed 2500˝C., which implies that less than one-half of the hydrogen
and oxygen present combine at that temperature. This relates to combustion
under the pressure of the atmosphere. According to the determinations of Pro-
fessor Bunsen‡ in regard to combustion in a continued space, only one-third
of a mixture of hydrogen and oxygen will form a chemical compound at the
temperature of 2850˝C. and a pressure of ten atmospheres, and only a little
more than one-half when the temperature is reduced by the addition of nitro-
gen to 2024˝C., and the pressure to about three atmospheres exclusive of the
part due to the nitrogen.

Now 10 calories at 2500˝C. are to be regarded as reversibly convertible into
one calorie at 4˝C. together with the mechanical work representing the energy

∗ See Rühlmann’s Handbuch der mechaniechen Wärmetheorie, Bd. ii, p. 290.
† Comptes Rendus, t. lvi. p. 199; and t. Lxiv. 67.
‡ Pogg. Ana, Bd. exxxi (IS67), p. 161.
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of 9 calories. If, therefore, all the 34000 calories obtainable from the union
of hydrogen and oxygen under atmospheric pressure could be obtained at the
temperature of 2500˝C., and no higher, we should estimate the electromotive
work performed in a perfect electro-chemical apparatus in which these elements
are combined or separated at ordinary temperatures and under atmospheric
pressure as representing nine-tenths of the 34000 calories, and the heat evolved
or absorbed in the apparatus as representing one-tenth of the 34000 calories.∗
This, of course, would give an electromotive force exactly nine-tenths as great
as is obtained on the supposition that all the 34000 calories are convertible
into electromotive or mechanical work. But, according to all indications, the
estimate 2500˝C. (for the temperature at which we may regard all the heat of
combustion as obtainable) is far too high,† and we must regard the theoretical
value of the electromotive force necessary to electrolyze water as considerably
less than nine-tenths of the value obtained on the supposition that it is nec-
essary for the electromotive agent to supply all the energy necessary for the
process.

The case is essentially the same with respect to the electrolysis of hydrochlo-
ric acid, which is probably a more typical example of the process than the
electrolysis of water. The phenomenon of dissociation is equally marked, and
occurs at a much lower temperature, more than half of the gas being disso-
ciated at 1400˝C. ‡ And the heat which is obtained by the combination of
hydrochloric acid gas with water, especially with water which already con-
tains a considerable quantity of the acid, is probably only to be obtained at
temperatures comparatively low. This indicates that the theoretical value of
the electromotive force necessary to electrolyze this acid (i.e., the electromo-
tive force which would be necessary in a reversible electro-chemical apparatus)
must be very much less than that which could perform in electromotive work
the equivalent of all the heat evolved in the combination of hydrogen, chlo-
rine and water to form the liquid submitted to electrolysis. This presumption,
based upon the phenomena exhibited in the direct combination of the sub-
stances, is corroborated by the experiments of M. Favre, who has observed
an absorption of heat in the cell in which this acid was electrolyzed.§ The
electromotive work expended must therefore have been less than the increase

∗ These numbers are not subject to correction for the pressure of the atmosphere, since the 34000 calories
relate to combustion under the same pressure.

† Unless the received ideas concerning the behavior of gases at high temperatures are quite erroneous,
it is possible to indicate the general character of a process (involving at most only such difficulties as are
neglected in theoretical discussions) by which water may be converted into separate masses of hydrogen and
oxygen without other expenditure than that of an amount of heat equal to the difference of energy of the
matter in the two states and supplied at a temperature far below 2500˝C. The essential parts of the process
would be (1) vaporizing the water and heating it to a temperature at which a considerable part will be
dissociated, (2) the partial separation of the hydrogen and oxygen by filtration, and (3) the cooling of both
gaseous masses until the vapor they contain is condensed. A little calculation will show that in a continuous
process all the heat obtained in the operation of cooling the products of filtration could be utilized in heating
fresh water.

‡ Sainte.Claire Deville, Comptes Rendw, t. Lxiv, p. 6.
§ See Iftinoires des Sirants Étrangers. ser. 2. t. xxv, no. 1. p. 142: or Comples Rendu. L. Lrxiii. p.

973. The figured ol,tained by M. Farre will be given hereaiter, in connection sith uchers of the same nature.
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of energy in the cell.
In both cases of composition in definite proportions which we have consid-

ered, the compound has more entropy than its elements, and the difference
is by no means inconsiderable. This appears to be the rule rather than the
exception with respect to compounds which have less energy than their ele-
ments. Yet it would be rash to assert that it is an invariable rule. And when
one substance is substituted for another in a compound, we may expect great
diversity in the relations of energy and entropy.

In some cases there is a striking correspondence between the electromotive
force of a cell and the rate of diminution of its energy per unit of electricity
transmitted, the temperature remaining constant. A Daniell’s cell is a no-
table example of this correspondence. It may perhaps be regarded as a very
significant case, since of all cells in common use, it has the most constant
electromotive force, and most nearly approaches the condition of reversibility.
If we apply our previous notation [compare (691)] with the substitution of
finite for infinitesimal differences to the determinations of M. Favre,∗ estimat-
ing energy in calories, we have for each equivalent ( 32.6 killogrammes) of zinc
dissolved

pV 2 ´ V 1q∆e “ 24327cal. , ∆ε “ ´25394cal. , ∆Q “ ´1067cal. .

It will be observed that the electromotive work performed by the cell is about
four per cent. less than the diminution of energy in the cell. † The value
of ∆Q, which, when negative, represents the heat evolved in the cell when
the external resistance of the circuit is very great, was determined by direct
measurement, and does not appear to have been corrected for the resistance of
the cell. This correction would diminish the value of ´∆Q, and increase that
of pV 2 ´ V 1q∆e, which was obtained by subtracting ´∆Q from ´∆ε.

It appears that under certain conditions neither heat nor cold is produced
in a Grove’s cell. For M. Favre has found that with different degrees of con-
centration of the nitric acid sometimes heat and sometimes cold is produced.‡
When neither is produced, of course the electromotive force of the cell is ex-
actly equal to its diminution of energy per unit of electricity transmitted. But
such a coincidence is far less significant than the fact that an absorption of
heat has been observed. With acid containing about seven equivalents of water
pHNO6 ` 7HOq

„

HNO3 ` 3
1

2
H2O

ȷ

, M. Favre has found

pV 2 ´ V 1q∆e “ 46781cal. , ∆ε “ ´41824cal. , ∆Q “ 4957cal. ;

∗ See Mém. Savants Étrang., loc. cit., p. 90; or Comptes Rendus, vol. lxix, p. 35, where the numbers
are slightly different.

† A comparison of the experiments of different physicists has in some cases given a much closer corre-
spondence. See Wiedemann’s Galvanismus, etc., 2te Auflage, Bd. ii §§1117,1118.

‡ Mém. Sarants Étrang., loc. cit., p. 93; or Comptes Rendus, t. lxix, p. 37, and t. Ixxiii, p. 893.
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and with acid containing about one equivalent of waterpHNO6 ` HOq

„

HNO3 `
1

6
H2O

ȷ

,

pV 2 ´ V 1q∆e “ 49847cal. , ∆ε “ ´52714cal. , ∆Q “ ´2867cal. .

In the first example, it will be observed that the quantity of heat absorbed
in the cell is not small, and that the electromotive force is nearly one-eighth
greater than can be accounted for by the diminution of energy in the cell.

This absorption of heat in the cell he has observed in other cases, in which
the chemical processes are much more simple.

For electrodes of cadmium and platinum in hydrochloric acid his experi-
ments give∗

pV 2 ´ V 1q∆e “ 9256cal., ∆ε “ ´8258cal..

∆WP “ ´290cal. , ∆Q “ 1288cal..

In this case the electromotive force is nearly one-sixth greater than can be
accounted for by the diminution of energy in the cell with the work done
against the pressure of the atmosphere.

For electrodes of zinc and platinum in the same acid one series of experi-
ments gives†

pV 2 ´ V 1q∆e “ 16950cal. , ∆ε “ ´16189cal. ,

∆WP “ ´290cal., ∆Q “ 1051cal.;

and a later series, ‡

pV 2 ´ V 1q∆e “ 16738cal., ∆ε “ ´17702cal.,

∆WP “ ´290cal., ∆Q “ ´674cal..

In the electrolysis of hydrochloric acid in a cell with a porous partition, he
has found§

pV 1 ´ V 2q∆e “ 34825cal. ∆Q “ 2113cal..

whence
∆ε ´ ∆Wp “ 36938.

We cannot assign a precise value to ∆WP, since the quantity of chlorine which
was evolved in the form of gas is not stated. But the value of ´∆WP must lie
between 290cal. and 580cal., probably nearer to the former.

∗ Comples Rendus, t. lxviii. p. 1305. The total beat obtained in the whole circuit (including the cell)
when all the electromotive work is turned into heat, was ascertained by direct experiment. This quantity,
7968 calories, is evidently represented by pV 2 ´ V 1q∆e´ ∆Q, also by ´∆ε` ∆WP. [See (691).] The value
of pV 2 ´ V 1q∆e is obtained by adding ∆Q, and that of ´∆ε by adding ´∆WP, which is easily estimated,
being determiner by the evolution of one kilogramme of hydrogen.

† Ibid
‡ Mém. Savants Étrang., loc. cit., p. 145.
§ lbid
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The great difference in the results of the two series of experiments relating to
electrodes of zinc and platinum in hydrochloric acid is most naturally explained
by supposing some difference in the conditions of the experiment, as in the
concentration of the acid, or in the extent to which the substitution of zinc for
hydrogen took place.∗ That which it is important for us to observe in all these
cases is that there are conditions under which heat is absorbed in a galvanic
or electrolytic cell, so that the galvanic cell has a greater electromotive force
than can be accounted for by the diminution of its energy, and the operation
of electrolysis requires a less electromotive force than would be calculated from
the increase of energy in the cell, —especially when the work done against the
pressure of the atmosphere is taken into account.

It should be noticed that in all these experiments the quantity represented
by ∆Q (which is the critical quantity with respect to the point at issue) was
determined by direct measurement of the heat absorbed or evolved by the cell
when placed alone in a calorimeter. The resistance of the circuit was made so
great by a rheostat placed outside of the calorimeter that the resistance of the
cell was regarded as insignificant in comparison, and no correction appears to
have been made in any case for this resistance. With exception of the error
due to this circumstance, which would in all cases diminish the heat absorbed
in the cell (or increase the heat evolved), the probable error of ∆Q must
be very small in comparison with that of pV 1 ´ V 2q∆e, or with that of ∆ε,
which were in general determined by the comparison of different calorimetrical
measurements, involving very much greater quantities of heat.

In considering the numbers which have been cited, we should remember
that when hydrogen is evolved as gas the process is in general very far from
reversible. In a perfect electrochemical apparatus, the same changes in the cell
would yield a much greater amount of electromotive work, or absorb a much
less amount. In either case, the value of ∆Q would be much greater than in
the imperfect apparatus, the difference being measured perhaps by thousands
of calories.†

∗ It should perhaps be stated that in his extended memoir published in 1877 in the Mémoires des Savants
Étrangers, in which he has presumably collected those results of his experiments which he regards as most
important and most accurate. M. Favre does not mention the absorption of heat in a cell of this kind, or in
the similar cell in which cadmium takes the place of zinc. This may be taken to indicate a decided preference
for the later experimental which showed an evolution of heat. Whatever the ground of this preference may
have been, it can hardly destroy the significance of the absorption of heat, which was a matter of direct
observation in repeated experiments. See Comptes Rendus, t. lxviii. p. 1305.

† Except in the case of the Grove’s cell, in which the reactions are quite complicated, the absorption of heat
is most marked in the electrolysis of hydrochloric acid. The latter case is interesting, since the experiments
confirm the presumption afforded by the behavior of the substances in other circumstances. (See page 291.)
In addition to the circumstances mentioned above tending to diminish the observed absorption of heat, the
following, which are peculiar to this case, should be noticed.

The electrolysis was performed in a cell with a porous partition, in order to prevent the chlorine and
hydrogen dissolved in the liquid from coming in contact with each ocher. It had appeared in a previous
series of experiments (Mém. Sarants Étrang., loc cit., p. 131; or Comptes Rendus, t. lxvi, p. 1231), that a
very considerable amount of heat might be produced by the chemical union of the gases in solution. In a cell
without partition, instead of an absorption, an evolution of heat took place, which sometimes exceeded 5000
calories. If, therefore, the partition did not perfectly perform its office, this could only cause a diminution
in the value of ∆Q.
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It often occurs in a galvanic or electrolytic cell that an ion which is set free
at one of the electrodes appears in part as gas, and is in part absorbed by the
electrolytic fluid, and in part absorbed by the electrode. In such cases, a slight
variation in the circumstances, which would not sensibly affect the electromo-
tive force, would cause all of the ion to be disposed of in one of the three ways
mentioned, if the current were sufficiently weak. This would make a consid-
erable difference in the variation of energy in the cell, and the electromotive
force cannot certainly be calculated from the variation of energy alone in all
these cases. The correction due to the work performed against the pressure of
the atmosphere when the ion is set free as gas will not help us in reconciling
these differences. It will appear on consideration that this correction will in
general increase the discordance in the values of the electromotive force. Nor
does it distinctly appear which of these cases is to be regarded as normal and
which are to be rejected as involving secondary processes.∗

If in any case secondary processes are excluded, we should expect it to
be when the ion is identical in substance with the electrode upon which it is
deposited, or from which it passes into the electrolyte. But even in this case
we do not escape the difficulty of the different forms in which the substance
may appear. If the temperature of the experiment is at the melting point of a
metal which forms the ion and the electrode, a slight variation of temperature
will cause the ion to be deposited in the solid or in the liquid state, or, if the
current is in the opposite direction, to be taken up from a solid or from a
liquid body. Since this will make a considerable difference in the variation of
energy, we obtain different values for the electromotive force above and below
the melting point of the metal, unless we also take account of the variations
of entropy. Experiment does not indicate the existence of any such difference,
† and when we take account of variations of entropy, as in equation (694), it

A large part at least of the chlorine appears to have been absorbed by the electrolytic fluid. It is probable
that a slight difference in the circumstances of the experimental —diminution of pressure, for example,—
might have caused the greater part of the chlorine to be evolved as gas, without essentially affecting the
electromotive force. The solution of chlorine in water presents some anomalies, and may be attended with
complex reactions, but it appears to be always attended with a very considerable evolution of heat. (See
Berthelot, Comptes Rendus, t lxxvi, p. 1514.) If we regard the evolution of the chlorine in the form of gas
as the normal process, we may suppose that the absorption of heat in the cell was greatly diminished by the
retention of the chlorine in solution.

Under certain circumstances, oxygen is evolved in the electrolysis of dilute hydrochloric acid. It does not
appear that this took place to any considerable extent in the experiments which we are considering. But so
far as it may have occurred, we may regard it as a case of the electrolysis of water. The significance of the
fact of the absorption of heat is not thereby affected.

∗ It will be observed that in using the formula (694) and (696) we do not have to make any distinction
between primary and secondary processes. The only limitation to the generality of these formula depends
upon the reversibility of the processes, and this limitation does not apply to (696).

† M. Raoult has experimented with a galvanic element having an electrode of bismuth in contact with
phosphoric acid containing phosphate of bismuth in solution. (See Comptes Rendus, t. lxviii, p. 643.) Since
this metal absorbs in melting 12.64 calories per kilogramme or 885 calories per equivalent (70kil.), while a
Daniell’s cell yields about 24000 calories of electromotive work per equivalent of metal, the solid or liquid
state of the bismuth ought to make a difference of electromotive force represented by .037 of a Daniell’s cell,
if the electromotive force depended simply upon the energy of the cell. But in M. Raoult’s experiments no
sudden change of electromotive force was manifested at the moment when the bismuth changed its state of
aggregation. In fact, a change of temperature in the electrode from about fifteen degrees above to about
fifteen degrees below the temperature of fusion only occasioned a variation of electromotive force equal to
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is apparent that there ought not to be any, the terms dε

de
and t

dη

de
being both

affected by the same difference, viz., the heat of fusion of an electrochemical
equivalent of the metal. In fact, if such a difference existed, it would be easy
to devise arrangements by which the heat yielded by a metal in passing from
the liquid to the solid state could be transformed into electromotive work (and
therefore into mechanical work) without other expenditure.

The foregoing examples will be sufficient, it is believed, to show the necessity
of regarding other considerations in determining the electromotive force of a
galvanic or electrolytic cell than the variation of its energy alone (when its
temperature is supposed to remain constant), or corrected only for the work
which may be done by external pressures or by gravity. But the relations
expressed by (693), (694), and (696) may be put in a briefer form.

If we set, as on page 35,
ψ “ ε ´ tη

we have, for any constant temperature,
dψ “ dε ´ tdη

and for any perfect electro-chemical apparatus, the temperature of which is
maintained constant,

V 2 ´ V 1 “ ´
dψ

de
`

dWG

de
`

dWP

de
; (697)

and for any cell whatever, when the temperature is maintained uniform and
constant,

pV 2 ´ V 1q de ő ´dψ ` dWG ` dWP (698)

In a cell of any ordinary dimensions, the work done by gravity, as well as
the inequalities of pressure in different parts of the cell may be neglected. If
the pressure as well as the temperature is maintained uniform and constant,
and we set, as on page 37,

ζ “ ε ´ tη ` pv

where p denotes the pressure in the cell, and v its total volume (including the
products of electrolysis), we have

dζ “ dε ´ tdη ` pdv

and for a perfect electro-chemical apparatus,

V 2 ´ V 1 “ ´
dζ

de
, (699)

or for any cell,
pV 2 ´ V 1q de ő ´dζ. (700)

.002 of a Daniell’s cell.
Experiments upon lead and tin gave similar results.
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